84 research outputs found

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Automated Image Registration And Mosaicking For Multi-Sensor Images Acquired By A Miniature Unmanned Aerial Vehicle Platform

    Get PDF
    Algorithms for automatic image registration and mosaicking are developed for a miniature Unmanned Aerial Vehicle (MINI-UAV) platform, assembled by Air-O-Space International (AOSI) L.L.C.. Three cameras onboard this MINI-UAV platform acquire images in a single frame simultaneously at green (550nm), red (650 nm), and near infrared (820nm) wavelengths, but with shifting and rotational misalignment. The area-based method is employed in the developed algorithms for control point detection, which is applicable when no prominent feature details are present in image scenes. Because the three images to be registered have different spectral characteristics, region of interest determination and control point selection are the two key steps that ensure the quality of control points. Affine transformation is adopted for spatial transformation, followed by bilinear interpolation for image resampling. Mosaicking is conducted between adjacent frames after three-band co-registration. Pre-introducing the rotation makes the area-based method feasible when the rotational misalignment cannot be ignored. The algorithms are tested on three image sets collected at Stennis Space Center, Greenwood, and Oswalt in Mississippi. Manual evaluation confirms the effectiveness of the developed algorithms. The codes are converted into a software package, which is executable under the Microsoft Windows environment of personal computer platforms without the requirement of MATLAB or other special software support for commercial-off-the-shelf (COTS) product. The near real-time decision-making support is achievable with final data after its installation into the ground control station. The final products are color-infrared (CIR) composite and normalized difference vegetation index (NDVI) images, which are used in agriculture, forestry, and environmental monitoring

    Development and implementation of image fusion algorithms based on wavelets

    Get PDF
    Image fusion is a process of blending the complementary as well as the common features of a set of images, to generate a resultant image with superior information content in terms of subjective as well as objective analysis point of view. The objective of this research work is to develop some novel image fusion algorithms and their applications in various fields such as crack detection, multi spectra sensor image fusion, medical image fusion and edge detection of multi-focus images etc. The first part of this research work deals with a novel crack detection technique based on Non-Destructive Testing (NDT) for cracks in walls suppressing the diversity and complexity of wall images. It follows different edge tracking algorithms such as Hyperbolic Tangent (HBT) filtering and canny edge detection algorithm. The second part of this research work deals with a novel edge detection approach for multi-focused images by means of complex wavelets based image fusion. An illumination invariant hyperbolic tangent filter (HBT) is applied followed by an adaptive thresholding to get the real edges. The shift invariance and directionally selective diagonal filtering as well as the ease of implementation of Dual-Tree Complex Wavelet Transform (DT-CWT) ensure robust sub band fusion. It helps in avoiding the ringing artefacts that are more pronounced in Discrete Wavelet Transform (DWT). The fusion using DT-CWT also solves the problem of low contrast and blocking effects. In the third part, an improved DT-CWT based image fusion technique has been developed to compose a resultant image with better perceptual as well as quantitative image quality indices. A bilateral sharpness based weighting scheme has been implemented for the high frequency coefficients taking both gradient and its phase coherence in accoun

    Registration of Textured Remote Sensing Images Using Directional Gabor Frames

    Get PDF
    In this paper we propose to utilize a new concept of discrete directional Gabor frames for automatic image registration. The directional Gabor representations have been shown to provide more accurate feature extraction than directional wavelet transforms for images where texture is the dominant feature. Initial experimental results are presented here which indicate that discrete directional Gabor frames exhibit strong correlations, which indicates that they are likely to improve the existing image registration toolbox
    corecore