207 research outputs found

    Neural Models of Seeing and Thinking

    Full text link
    Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    On Occluding Contour Artifacts in Stereo Vision

    Get PDF
    We study occluding contour artifacts in area-based stereo matching: they are false responses of the matching operator to the occlusion boundary and cause the objects to extend beyond their true boundaries in disparity maps. Most of the matching methods suffer from these artifacts; the effect is so strong that it cannot be ignored. We show what gives rise to the artifacts and design a matching criterion that accommodates the presence of occlusions as opposed to methods that identify and remove the artifacts. This approach leads to the problem of measurement contamination studied in statistics. We show that such a problem is hard given finite computational resources, unless more independent measurements directly related to occluding contours is available. What can be achieved is a substantial reduction of the artifacts, especially for large matching templates. Reduced artifacts allow for easier hierarchical matching and for easy fusion of reconstructions from different viewpoints into a coherent whole

    Extraction of Surface-Related Features in a Recurrent Model of V1-V2 Interactions

    Get PDF
    Humans can effortlessly segment surfaces and objects from two-dimensional (2D) images that are projections of the 3D world. The projection from 3D to 2D leads partially to occlusions of surfaces depending on their position in depth and on viewpoint. One way for the human visual system to infer monocular depth cues could be to extract and interpret occlusions. It has been suggested that the perception of contour junctions, in particular T-junctions, may be used as cue for occlusion of opaque surfaces. Furthermore, X-junctions could be used to signal occlusion of transparent surfaces.In this contribution, we propose a neural model that suggests how surface-related cues for occlusion can be extracted from a 2D luminance image. The approach is based on feedforward and feedback mechanisms found in visual cortical areas V1 and V2. In a first step, contours are completed over time by generating groupings of like-oriented contrasts. Few iterations of feedforward and feedback processing lead to a stable representation of completed contours and at the same time to a suppression of image noise. In a second step, contour junctions are localized and read out from the distributed representation of boundary groupings. Moreover, surface-related junctions are made explicit such that they are evaluated to interact as to generate surface-segmentations in static images. In addition, we compare our extracted junction signals with a standard computer vision approach for junction detection to demonstrate that our approach outperforms simple feedforward computation-based approaches.A model is proposed that uses feedforward and feedback mechanisms to combine contextually relevant features in order to generate consistent boundary groupings of surfaces. Perceptually important junction configurations are robustly extracted from neural representations to signal cues for occlusion and transparency. Unlike previous proposals which treat localized junction configurations as 2D image features, we link them to mechanisms of apparent surface segregation. As a consequence, we demonstrate how junctions can change their perceptual representation depending on the scene context and the spatial configuration of boundary fragments

    Cortical Dynamics of 3-D Surface Perception: Binocular and Half-Occluded Scenic Images

    Full text link
    Previous models of stereopsis have concentrated on the task of binocularly matching left and right eye primitives uniquely. A disparity smoothness constraint is often invoked to limit the number of possible matches. These approaches neglect the fact that surface discontinuities are both abundant in natural everyday scenes, and provide a useful cue for scene segmentation. da Vinci stereopsis refers to the more general problem of dealing with surface discontinuities and their associated unmatched monocular regions within binocular scenes. This study develops a mathematical realization of a neural network theory of biological vision, called FACADE Theory, that shows how early cortical stereopsis processes are related to later cortical processes of 3-D surface representation. The mathematical model demonstrates through computer simulation how the visual cortex may generate 3-D boundary segmentations and use them to control filling-in of 3-D surface properties in response to visual scenes. Model mechanisms correctly match disparate binocular regions while filling-in monocular regions with the correct depth within a binocularly viewed scene. This achievement required introduction of a new multiscale binocular filter for stereo matching which clarifies how cortical complex cells match image contours of like contrast polarity, while pooling signals from opposite contrast polarities. Competitive interactions among filter cells suggest how false binocular matches and unmatched monocular cues, which contain eye-of-origin information, arc automatically handled across multiple spatial scales. This network also helps to explain data concerning context-sensitive binocular matching. Pooling of signals from even-symmetric and odd-symmctric simple cells at complex cells helps to eliminate spurious activity peaks in matchable signals. Later stages of cortical processing by the blob and interblob streams, including refined concepts of cooperative boundary grouping and reciprocal stream interactions between boundary and surface representations, arc modeled to provide a complete simulation of the da Vinci stereopsis percept.Office of Naval Research (N00014-95-I-0409, N00014-85-1-0657, N00014-92-J-4015, N00014-91-J-4100); Airforce Office of Scientific Research (90-0175); National Science Foundation (IRI-90-00530); The James S. McDonnell Foundation (94-40

    How Does the Cerebral Cortex Work? Developement, Learning, Attention, and 3D Vision by Laminar Circuits of Visual Cortex

    Full text link
    A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Using encoder-decoder architecture for material segmentation based on beam profile analysis

    Get PDF
    Abstract. Recognition and segmentation of materials has proven to be a challenging problem because of the wide divergence in appearance within and between categories. Many recent material segmentation approaches treat materials as yet another set of labels like objects. However, materials are basically different from objects as they have no basic shape or defined spatial extent. Our approach roughly ignores this and can primarily take advantage of limited implicit context (local appearance) as it seems during training, because our training images that almost do not have a global image context; such as (I) where the used materials have no inherent shape or defined spatial extent like apple, orange and potato approximately have the same spherical shape; (II) besides, images where taken under a black background, which roughly removes the spatial features of the materials. We introduce a new materials segmentation dataset, which was taken with a Beam Profile Analysis sensing device. The dataset contains 10 material categories, and it has image pair samples consisting of grayscale images with and without the laser spots (grayscale and laser images) in addition to annotated segmented images. To the best of our knowledge, this is the first material segmentation dataset for Beam Profile Analysis images. As a second step, we proposed a deep learning approach to perform material segmentation on our dataset; our proposed CNNs is an encoder-decoder model, which is based on the DeeplabV3+ model. Our main goal is to obtain segmented material maps and discover how the laser spots contribute to the segmentation results; therefore, we perform a comparative analysis across different types of architectures to observe how the laser spots contribute to the whole segmentation. We built our experiments on three main types of models that use a different type of input; for each model, we implemented various types of backbone architectures. Our experiments results show that the laser spots have an efficient contribution on the segmentation results. GrayLaser model achieves a significant accuracy improvement compared to other models, where the fine-tuned architecture of this model has reached an accuracy of 94% over MIoU metric, and one trained from the scratch has reached an accuracy of 62% over MIoU

    The Impact of 2-D and 3-D Grouping Cues on Depth From Binocular Disparity

    Get PDF
    Stereopsis is a powerful source of information about the relative depth of objects in the world. In isolation, humans can see depth from binocular disparity without any other depth cues. However, many different stimulus properties can dramatically influence the depth we perceive. For example, there is an abundance of research showing that the configuration of a stimulus can impact the percept of depth, in some cases diminishing the amount of depth experience. Much of the previous research has focused on discrimination thresholds; in one example, stereoacuity for a pair of vertical lines was shown to be markedly reduced when these lines were connected to form a rectangle apparently slanted in depth (eg: McKee, 1983). The contribution of Gestalt figural grouping to this phenomenon has not been studied. This dissertation addresses the role that perceptual grouping plays in the recovery of suprathreshold depth from disparity. First, I measured the impact of perceptual closure on depth magnitude. Observers estimated the separation in depth of a pair of vertical lines as the amount of perceptual closure was varied. In a series of experiments, I characterized the 2-D and 3-D properties that contribute to 3-D closure and the estimates of apparent depth. Estimates of perceived depth were highly correlated to the strength of subjective closure. Furthermore, I highlighted the perceptual consequences (both costs and benefits) of a new disparity-based grouping cue that interacts with perceived closure, which I call good stereoscopic continuation. This cue was shown to promote detection in a visual search task but reduces depth percepts compared to isolated features. Taken together, the results reported here show that specific 2-D and 3-D grouping constraints are required to promote recovery of a 3-D object. As a consequence, quantitative depth is reduced, but the object is rapidly detected in a visual search task. I propose that these phenomena are the result of object-based disparity smoothing operations that enhance object cohesion
    • …
    corecore