5,265 research outputs found

    Air pollution modelling for birth cohorts: a time-space regression model

    Get PDF
    To investigate air pollution effects during pregnancy or in the first weeks of life, models are needed that capture both the spatial and temporal variability of air pollution exposures.; We developed a time-space exposure model for ambient NO2 concentrations in Bern, Switzerland. We used NO2 data from passive monitoring conducted between 1998 and 2009: 101 rural sites (24,499 biweekly measurements) and 45 urban sites (4350 monthly measurements). We evaluated spatial predictors (land use; roads; traffic; population; annual NO2 from a dispersion model) and temporal predictors (meteorological conditions; NO2 from continuous monitoring station). Separate rural and urban models were developed by multivariable regression techniques. We performed ten-fold internal cross-validation, and an external validation using 57 NO2 passive measurements obtained at study participant's homes.; Traffic related explanatory variables and fixed site NO2 measurements were the most relevant predictors in both models. The coefficient of determination (R(2)) for the log transformed models were 0.63 (rural) and 0.54 (urban); cross-validation R(2)s were unchanged indicating robust coefficient estimates. External validation showed R(2)s of 0.54 (rural) and 0.67 (urban).; This approach is suitable for air pollution exposure prediction in epidemiologic research with time-vulnerable health effects such as those occurring during pregnancy or in the first weeks of life

    Machine learning in drug supply chain management during disease outbreaks: a systematic review

    Get PDF
    The drug supply chain is inherently complex. The challenge is not only the number of stakeholders and the supply chain from producers to users but also production and demand gaps. Downstream, drug demand is related to the type of disease outbreak. This study identifies the correlation between drug supply chain management and the use of predictive parameters in research on the spread of disease, especially with machine learning methods in the last five years. Using the Publish or Perish 8 application, there are 71 articles that meet the inclusion criteria and keyword search requirements according to Kitchenham's systematic review methodology. The findings can be grouped into three broad groupings of disease outbreaks, each of which uses machine learning algorithms to predict the spread of disease outbreaks. The use of parameters for prediction with machine learning has a correlation with drug supply management in the coronavirus disease case. The area of drug supply risk management has not been heavily involved in the prediction of disease outbreaks

    Forecasting temporal dynamics of cutaneous leishmaniasis in Northeast Brazil.

    Get PDF
    IntroductionCutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions.Methodology/principal findingsWe fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation.SignificanceThese outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets

    The effect of distance on observed mortality, childhood pneumonia and vaccine efficacy in rural Gambia.

    Get PDF
    We investigated whether straight-line distance from residential compounds to healthcare facilities influenced mortality, the incidence of pneumonia and vaccine efficacy against pneumonia in rural Gambia. Clinical surveillance for pneumonia was conducted on 6938 children living in the catchment areas of the two largest healthcare facilities. Deaths were monitored by three-monthly home visits. Children living >5 km from the two largest healthcare facilities had a 2·78 [95% confidence interval (CI) 1·74-4·43] times higher risk of all-cause mortality compared to children living within 2 km of these facilities. The observed rate of clinical and radiological pneumonia was lower in children living >5 km from these facilities compared to those living within 2 km [rate ratios 0·65 (95% CI 0·57-0·73) and 0·74 (95% CI 0·55-0·98), respectively]. There was no association between distance and estimated pneumococcal vaccine efficacy. Geographical access to healthcare services is an important determinant of survival and pneumonia in children in rural Gambia

    Climate Change and Highland Malaria: Fresh Air for a Hot Debate

    Get PDF
    In recent decades, malaria has become established in zones at the margin of its previous distribution, especially in the highlands of East Africa. Studies in this region have sparked a heated debate over the importance of climate change in the territorial expansion of malaria, where positions range from its neglect to the reification of correlations as causes. Here, we review studies supporting and rebutting the role of climatic change as a driving force for highland invasion by malaria. We assessed the conclusions from both sides of the argument and found that evidence for the role of climate in these dynamics is robust. However, we also argue that over-emphasizing the importance of climate is misleading for setting a research agenda, even one which attempts to understand climate change impacts on emerging malaria patterns. We review alternative drivers for the emergence of this disease and highlight the problems still calling for research if the multidimensional nature of malaria is to be adequately tackled. We also contextualize highland malaria as an ongoing evolutionary process. Finally, we present Schmalhausen's law, which explains the lack of resilience in stressed systems, as a biological principle that unifies the importance of climatic and other environmental factors in driving malaria patterns across different spatio-temporal scales

    Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review

    Get PDF
    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed

    Malaria and land use: a spatial and temporal risk analysis in Southern Sri Lanka

    Get PDF
    Malaria / Waterborne diseases / Disease vectors / Land use / Water use / GIS / Statistical analysis / Risks / Mapping / Public health / Sri Lanka / Uda Walawe / Thanamalvila / Embilipitiya

    Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand

    Get PDF
    In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been broadly studied in recent years, especially for Africa, where the majority of the world’s malaria occurs. Although the Greater Mekong Subregion (GMS), which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegetation index obtained from both climate time series and satellite measurements were used as independent variables to model malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria transmission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi, Mae Hong Son, and Tak) which are among the provinces most endemic for malaria, is 72.8% and the average testing accuracy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accuracy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided the malaria cases into bands (classes) to compute training accuracy. Using the same neural network architecture on the 19 most endemic provinces for years 1994 to 2000, the mean training accuracy weighted by provincial malaria cases was 73%. Prediction of malaria cases for 2001 using neural networks trained for 1994-2000 gave a weighted accuracy of 53%. Because there was a significant decrease (31%) in the number of malaria cases in the 19 provinces from 2000 to 2001, the networks overestimated malaria transmissions. The decrease in transmission was not due to climatic or environmental changes. Thailand is a country with long borders. Migrant populations from the neighboring countries enlarge the human malaria reservoir because these populations have more limited access to health care. This issue also confounds the complexity of modeling malaria based on meteorological and environmental variables alone. In spite of the relatively low resolution of the data and the impact of migrant populations, we have uncovered a reasonably clear dependency of malaria on meteorological and environmental remote sensing variables. When other contextual determinants do not vary significantly, using neural network analysis along with remote sensing variables to predict malaria endemicity should be feasible
    • …
    corecore