14,811 research outputs found

    Breakdown of large-N quenched reduction in SU(N) lattice gauge theories

    Full text link
    We study the validity of the large-N equivalence between four-dimensional SU(N) lattice gauge theory and its momentum quenched version--the Quenched Eguchi-Kawai (QEK) model. We find that the assumptions needed for the proofs of equivalence do not automatically follow from the quenching prescription. We use weak-coupling arguments to show that large-N equivalence is in fact likely to break down in the QEK model, and that this is due to dynamically generated correlations between different Euclidean components of the gauge fields. We then use Monte-Carlo simulations at intermediate couplings with 20 <= N <= 200 to provide strong evidence for the presence of these correlations and for the consequent breakdown of reduction. This evidence includes a large discrepancy between the transition coupling of the "bulk" transition in lattice gauge theories and the coupling at which the QEK model goes through a strongly first-order transition. To accurately measure this discrepancy we adapt the recently introduced Wang-Landau algorithm to gauge theories.Comment: 51 pages, 16 figures, Published verion. Historical inaccuracies in the review of the quenched Eguchi-Kawai model are corrected, discussion on reduction at strong-coupling added, references updated, typos corrected. No changes to results or conclusion

    Infinite number of MSSMs from heterotic line bundles?

    Full text link
    We consider heterotic E8xE8 supergravity compactified on smooth Calabi-Yau manifolds with line bundle gauge backgrounds. Infinite sets of models that satisfy the Bianchi identities and flux quantization conditions can be constructed by letting their background flux quanta grow without bound. Even though we do not have a general proof, we find that all examples are at the boundary of the theory's validity: the Donaldson-Uhlenbeck-Yau equations, which can be thought of as vanishing D-term conditions, cannot be satisfied inside the Kaehler cone unless a growing number of scalar Vacuum Expectation Values (VEVs) is switched on. As they are charged under various line bundles simultaneously, the gauge background gets deformed by these VEVs to a non-Abelian bundle. In general, our physical expectation is that such infinite sets of models should be impossible, since they never seem to occur in exact CFT constructions.Comment: LaTeX, 8 pages, 4 tables, some references and comments adde

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Numerical simulation evidence of spectrum rearrangement in impure graphene

    Full text link
    By means of numerical simulation we confirm that in graphene with point defects a quasigap opens in the vicinity of the resonance state with increasing impurity concentration. We prove that states inside this quasigap cannot longer be described by a wavevector and are strongly localized. We visualize states corresponding to the density of states maxima within the quasigap and show that they are yielded by impurity pair clusters

    Ewald summation on a helix : a route to self-consistent charge density-functional based tight-binding objective molecular dynamics

    Get PDF
    We explore the generalization to the helical case of the classical Ewald method, the harbinger of all modern self-consistent treatments of waves in crystals, including ab initio electronic structure methods. Ewald-like formulas that do not rely on a unit cell with translational symmetry prove to be numerically tractable and able to provide the crucial component needed for coupling objective molecular dynamics with the self-consistent charge density-functional based tight-binding treatment of the inter-atomic interactions. The robustness of the method in addressing complex hetero-nuclear nano- and bio-systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a screw dislocated zinc oxide nanowire, and an ideal DNA molecule
    • 

    corecore