1,251 research outputs found

    A survey of scan-capture power reduction techniques

    Get PDF
    With the advent of sub-nanometer geometries, integrated circuits (ICs) are required to be checked for newer defects. While scan-based architectures help detect these defects using newer fault models, test data inflation happens, increasing test time and test cost. An automatic test pattern generator (ATPG) exercise’s multiple fault sites simultaneously to reduce test data which causes elevated switching activity during the capture cycle. The switching activity results in an IR drop exceeding the devices under test (DUT) specification. An increase in IR-drop leads to failure of the patterns and may cause good DUTs to fail the test. The problem is severe during at-speed scan testing, which uses a functional rated clock with a high frequency for the capture operation. Researchers have proposed several techniques to reduce capture power. They used various methods, including the reduction of switching activity. This paper reviews the recently proposed techniques. The principle, algorithm, and architecture used in them are discussed, along with key advantages and limitations. In addition, it provides a classification of the techniques based on the method used and its application. The goal is to present a survey of the techniques and prepare a platform for future development in capture power reduction during scan testing

    An Efficient Test Relaxation Technique for Synchronous Sequential Circuits

    Get PDF
    Testing systems-on-a-chip (SOC) involves applying huge amounts of test data, which is stored in the tester memory and then transferred to the circuit under test (CUT) during test application. Therefore, practical techniques, such as test compression and compaction, are required to reduce the amount of test data in order to reduce both the total testing time and the memory requirements for the tester. Test-set relaxation can improve the efficiency of both test compression and test compaction. In addition, the relaxation process can identify selfinitializing test sequences for synchronous sequential circuits. In this paper, we propose an efficient test relaxation technique for synchronous sequential circuits that maximizes the number of unspecified bits while maintaining the same fault coverage as the original test set

    An Efficient Test Relaxation Technique for Synchronous Sequential Circuits

    Get PDF
    Testing systems-on-a-chip (SOC) involves applying huge amounts of test data, which is stored in the tester memory and then transferred to the circuit under test (CUT) during test application. Therefore, practical techniques, such as test compression and compaction, are required to reduce the amount of test data in order to reduce both the total testing time and the memory requirements for the tester. Test-set relaxation can improve the efficiency of both test compression and test compaction. In addition, the relaxation process can identify selfinitializing test sequences for synchronous sequential circuits. In this paper, we propose an efficient test relaxation technique for synchronous sequential circuits that maximizes the number of unspecified bits while maintaining the same fault coverage as the original test set

    Compiling and optimizing spreadsheets for FPGA and multicore execution

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007."September 2007."Includes bibliographical references (p. 102-104).A major barrier to developing systems on multicore and FPGA chips is an easy-to-use development environment. This thesis presents the RhoZeta spreadsheet compiler and Catalyst optimization system for programming multiprocessors and FPGAs. Any spreadsheet frontend may be extended to work with RhoZeta's multiple interpreters and behavioral abstraction mechanisms. RhoZeta synchronizes a variety of cell interpreters acting on a global memory space. RhoZeta can also compile a group of cells to multithreaded C or Verilog. The result is an easy-to-use interface for programming multicore microprocessors and FPGAs. A spreadsheet environment presents parallelism and locality issues of modem hardware directly to the user and allows for a simple global memory synchronization model. Catalyst is a spreadsheet graph rewriting system based on performing behaviorally invariant guarded atomic actions while a system is being interpreted by RhoZeta. A number of optimization macros were developed to perform speculation, resource sharing and propagation of static assignments through a circuit. Parallelization of a 64-bit serial leading-zero-counter is demonstrated with Catalyst. Fault tolerance macros were also developed in Catalyst to protect against dynamic faults and to offset costs associated with testing semiconductors for static defects. A model for partitioning, placing and profiling spreadsheet execution in a heterogeneous hardware environment is also discussed. The RhoZeta system has been used to design several multithreaded and FPGA applications including a RISC emulator and a MIDI controlled modular synthesizer.by Amir Hirsch.M.Eng

    Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization

    Get PDF
    None of the available minimizers for 2-level hazard-free logic minimization can synthesize very large circuits. This limitation has forced researchers to resort to manual and automated circuit partitioning techniques. This paper introduces two new 2-level logic minimizers:ESPRESSO-HF, a heuristic method which is loosely based on ESPRESSO-II, and IMPYMIN, an exact method based on implicit data structures. Both minimizers can solve all currently available examples, which range up to 32 inputs and 33 outputs.These include examples that have never been solved before.For examples that can be solved by other minimizers our methods are several orders of magnitude faster. As by-products of these algorithms, we also present two additional results. First, we introduce a fast new algorithm to check if a hazard-free covering problem can feasibly be solved. Second, we introduce a novel formulation of the 2-level hazard-free logic minimization problem by capturing hazard-freedom constraints within a synchronous function by adding new variables

    Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization

    Get PDF
    None of the available minimizers for 2-level hazard-free logic minimization can synthesize very large circuits. This limitation has forced researchers to resort to manual and automated circuit partitioning techniques. This paper introduces two new 2-level logic minimizers:ESPRESSO-HF, a heuristic method which is loosely based on ESPRESSO-II, and IMPYMIN, an exact method based on implicit data structures. Both minimizers can solve all currently available examples, which range up to 32 inputs and 33 outputs.These include examples that have never been solved before.For examples that can be solved by other minimizers our methods are several orders of magnitude faster. As by-products of these algorithms, we also present two additional results. First, we introduce a fast new algorithm to check if a hazard-free covering problem can feasibly be solved. Second, we introduce a novel formulation of the 2-level hazard-free logic minimization problem by capturing hazard-freedom constraints within a synchronous function by adding new variables

    Achieving fast and exact hazard-free logic minimization of extended burst-mode gC finite state machines

    Get PDF
    Journal ArticleAbstract This paper presents a new approach to two-level hazard-free logic minimization in the context of extended burst-mode finite state machine synthesis targeting generalized C-elements (gC). No currently available minimizers for literal-exact two-level hazard-free logic minimization of extended burst-mode gC controllers can handle large circuits without synthesis times ranging up over thousands of seconds. Even existing heuristic approaches take too much time when iterative exploration over a large design space is required and do not yield minimum results. The logic minimization approach presented in this paper is based on state graph exploration in conjunction with single-cube cover algorithms, an approach that has not been considered for minimization of extended burst-mode finite state machines previously. Our algorithm achieves very fast logic minimization by introducing compacted state graphs and cover tables and an efficient single-cube cover algorithm for single-output minimization. Our exact logic minimizer finds minimal number of literal solutions to all currently available benchmarks, in less than one second on a 333 MHz microprocessor - more than three orders of magnitude faster than existing literal exact methods, and over an order of magnitude faster than existing heuristic methods for the largest benchmarks. This includes a benchmark that has never been possible to solve exactly in number of literals before

    An Efficient Test Relaxation Technique for Combinational & Full-Scan Sequential Circuits

    Get PDF
    Reducing test data size is one of the major challenges in testing systems-on-a-chip. This problem can be solved by test compaction and/or compression techniques. Having a partially specified or relaxed test set increases the effectiveness of test compaction and compression techniques. In this paper, we propose a novel and efficient test relaxation technique for combinational and full-scan sequential circuits. The proposed technique is faster than the brute-force test relaxation method by several orders of magnitude. The application of the technique in improving the effectiveness of test compaction and compression is illustrated

    A finite state machine synthesizer

    Get PDF
    This thesis presents a Finite State Machine (FSM) Synthesizer developed at Portland State University. The synthesizer starts from a high level behavioral description, in which no states are specified, and generates the lower level FSM descriptions for simulation and physical layout generation
    corecore