3,569 research outputs found

    Silicon-on-insulator-based complementary metal oxide semiconductor integrated optoelectronic platform for biomedical applications

    Get PDF
    Microscale optical devices enabled by wireless power harvesting and telemetry facilitate manipulation and testing of localized biological environments (e.g., neural recording and stimulation, targeted delivery to cancer cells). Design of integrated microsystems utilizing optical power harvesting and telemetry will enable complex in vivo applications like actuating a single nerve, without the difficult requirement of extreme optical focusing or use of nanoparticles. Silicon-on-insulator (SOI)-based platforms provide a very powerful architecture for such miniaturized platforms as these can be used to fabricate both optoelectronic and microelectronic devices on the same substrate. Near-infrared biomedical optics can be effectively utilized for optical power harvesting to generate optimal results compared with other methods (e.g., RF and acoustic) at submillimeter size scales intended for such designs. We present design and integration techniques of optical power harvesting structures with complementary metal oxide semiconductor platforms using SOI technologies along with monolithically integrated electronics. Such platforms can become the basis of optoelectronic biomedical systems including implants and lab-on-chip systems

    Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Get PDF
    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design

    Ancient and historical systems

    Get PDF

    Characterization of Energy and Performance Bottlenecks in an Omni-directional Camera System

    Get PDF
    abstract: Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery constrained device needs at least three orders of magnitude reduction in power. We believe that close integration of capture and compute stages will lead to reduced overall system power. We approach the problem by building a hardware prototype and characterize the end-to-end system bottlenecks of power and performance. The prototype has 6 IMX274 cameras and uses Nvidia Jetson TX2 development board for capture and computation. We found that capturing is bottlenecked by sensor power and data-rates across interfaces, whereas compute is limited by the total number of computations per frame. Our characterization shows that redundant capture and redundant computations lead to high power, huge memory footprint, and high latency. The existing systems lack hardware-software co-design aspects, leading to excessive data transfers across the interfaces and expensive computations within the individual subsystems. Finally, we propose mechanisms to optimize the system for low power and low latency. We emphasize the importance of co-design of different subsystems to reduce and reuse the data. For example, reusing the motion vectors of the ISP stage reduces the memory footprint of the stereo correspondence stage. Our estimates show that pipelining and parallelization on custom FPGA can achieve real time stitching.Dissertation/ThesisPrototypeMasters Thesis Electrical Engineering 201

    Investigation of light source and scattering medium related to vapor-screen flow visualization in a supersonic wind tunnel

    Get PDF
    Methods for increasing the radiant in light sheets used for vapor screen set-ups were investigated. Both high-pressure mercury arc lamps and lasers were considered. Pulsed operation of the air-cooled 1-kW lamps increased the light output but decreased reliability. An ellipsoidal mirror improved the output of the air-cooled lamps by concentrating the light but increased the complexity of the housing. Water-cooled-4-kW lamps coupled with high-aperture Fresnel lenses provided reasonable improvements over the air-cooled lamps. Fanned laser beams measurements of scattered light versus dew point made in conjunction with successful attempts to control the fluid injection. A number of smoke generators are described and test results comparing smoke and vapor screens are shown. Finally, one test included a periscope system to relay the image to a camera outside the flow

    Continuous Culture Microbioreactors

    Get PDF
    • …
    corecore