993 research outputs found

    Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment

    Get PDF
    Critical to habitat management is the understanding of not only the location of animal food resources, but also the timing of their availability. Grizzly bear (Ursus arctos) diets, for example, shift seasonally as different vegetation species enter key phenological phases. In this paper, we describe the use of a network of seven ground-based digital camera systems to monitor understorey and overstorey vegetation within species-specific regions of interest. Established across an elevation gradient in western Alberta, Canada, the cameras collected true-colour (RGB) images daily from 13 April 2009 to 27 October 2009. Fourth-order polynomials were fit to an RGB-derived index, which was then compared to field-based observations of phenological phases. Using linear regression to statistically relate the camera and field data, results indicated that 61% (r 2?= 0.61, df = 1, F?= 14.3, p?= 0.0043) of the variance observed in the field phenological phase data is captured by the cameras for the start of the growing season and 72% (r 2?= 0.72, df = 1, F?= 23.09, p?= 0.0009) of the variance in length of growing season. Based on the linear regression models, the mean absolute differences in residuals between predicted and observed start of growing season and length of growing season were 4 and 6 days, respectively. This work extends upon previous research by demonstrating that specific understorey and overstorey species can be targeted for phenological monitoring in a forested environment, using readily available digital camera technology and RGB-based vegetation indices

    Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing

    Get PDF
    Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both “greenness rising” and “greenness falling” transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground

    Networked web-cameras monitor congruent seasonal development of birches with phenological field observations

    Get PDF
    Ecosystems' potential to provide services, e.g. to sequester carbon, is largely driven by the phonological cycle of vegetation. Timing of phenological events is required for understanding and predicting the influence of climate change on ecosystems and to support analyses of ecosystem functioning. Analyses of conventional camera time series mounted near vegetation has been suggested as a means of monitoring phenological events and supporting wider monitoring of phenological cycle of biomes that is frequently done with satellite earth observation (EO). Especially in the boreal biome, sparsely scattered deciduous trees amongst conifer-dominant forests pose a problem for EO techniques as species phenological signal mix, and render EO data difficult to interpret. Therefore, deriving phonological information from on the ground measurements would provide valuable reference data for earth observed phonology products in a larger scale. Keeping this in mind, we established a network of digital cameras for automated monitoring of phenological activity of vegetation in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1-3 cameras. In this study, we used data from 12 sites to investigate how well networked cameras can detect the phenological development of birches (Betula spp.) along a latitudinal gradient. Birches typically appear in small quantities within the dominant species. We tested whether the small, scattered birch image elements allow a reliable extraction of colour indices and the temporal changes therein. We compared automatically derived phenological dates from these birch image elements both to visually determined dates from the same image time series and to independent observations recorded in the phenological monitoring network covering the same region, Automatically extracted season start dates, which were based on the change of green colour fraction in spring, corresponded well with the visually interpreted start of the season, and also to the budburst dates observed in the field. Red colour fraction turned out to be superior to the green colour-based indices in predicting leaf yellowing and fall. The latitudinal gradients derived using automated phenological date extraction corresponded well with the gradients estimated from the phenological field observations. We conclude that small and scattered birch image elements allow reliable extraction of key phonological dates for the season start and end of deciduous species studied here, thus providing important species-specific data for model validation and for explaining the temporal variation in EO phenology products.Peer reviewe

    Emerging opportunities and challenges in phenology: a review

    Get PDF
    Plant phenology research has gained increasing attention because of the sensitivity of phenology to climate change and its consequences for ecosystem function. Recent technological development has made it possible to gather invaluable data at a variety of spatial and ecological scales. Despite our ability to observe phenological change at multiple scales, the mechanistic basis of phenology is still not well understood. Integration of multiple disciplines, including ecology, evolutionary biology, climate science, and remote sensing, with long-term monitoring data across multiple spatial scales are needed to advance understanding of phenology. We review the mechanisms and major drivers of plant phenology, including temperature, photoperiod, and winter chilling, as well as other factors such as competition, resource limitation, and genetics. Shifts in plant phenology have significant consequences on ecosystem productivity, carbon cycling, competition, food webs, and other ecosystem functions and services. We summarize recent advances in observation techniques across multiple spatial scales, including digital repeat photography, other complementary optical measurements, and solar induced fluorescence, to assess our capability to address the importance of these scale-dependent drivers. Then we review phenology models as an important component of earth system modeling. We find that the lack of species-level knowledge and observation data lead to difficulties in the development of vegetation phenology models at ecosystem or community scales. Finally, we recommend further research to advance understanding of the mechanisms governing phenology and the standardization of phenology observation methods across networks. With the opportunity for “big data” collection for plant phenology, we envision a breakthrough in process-based phenology modeling

    Assessing spring phenology of a temperate woodland : a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations

    Get PDF
    PhD ThesisVegetation phenology is the study of plant natural life cycle stages. Plant phenological events are related to carbon, energy and water cycles within terrestrial ecosystems, operating from local to global scales. As plant phenology events are highly sensitive to climate fluctuations, the timing of these events has been used as an independent indicator of climate change. The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. The aim of this research is to assess the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and to cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data were acquired in tandem with an intensive ground campaign during the spring season of 2015, over Hanging Leaves Wood, Northumberland, UK. The radiometric quality of the UAV imagery acquired by two consumer-grade cameras was assessed, in terms of the ability to retrieve reflectance and Normalised Difference Vegetation Index (NDVI), and successfully validated against ground (0.84≤R2≥0.96) and Landsat (0.73≤R2≥0.89) measurements, but only NDVI resulted in stable time series. The start (SOS), middle (MOS) and end (EOS) of spring season dates were estimated at an individual tree-level using UAV time series of NDVI and Green Chromatic Coordinate (GCC), with GCC resulting in a clearer and stronger seasonal signal at a tree crown scale. UAV-derived SOS could be predicted more accurately than MOS and EOS, with an accuracy of less than 1 week for deciduous woodland and within 2 weeks for evergreen. The UAV data were used to map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2<0.45) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, information which could improve characterization of vegetation phenology at multiple scales.The Science without Borders program, managed by CAPES-Brazil (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology&nbsp;at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution&nbsp;of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing&nbsp;technology, which enables the observation of the Earth’s surface and is currently very common in environmental&nbsp;research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of&nbsp;data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned&nbsp;aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature&nbsp;dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and&nbsp;conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and&nbsp;which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the&nbsp;vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of&nbsp;the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count&nbsp;birds and mammals, especially those living in the water. Generally, the analytical part of the present study was&nbsp;divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring&nbsp;the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and&nbsp;(4) population and behaviour studies of animals. At the end, we also synthesised all the information showing,&nbsp;amongst others, the advances in environmental biology because of UAV application. Considering that 33% of&nbsp;studies found and included in this review were published in 2017 and 2018, it is expected that the number and&nbsp;variety of applications of UAVs in environmental biology will increase in the future

    Eyes in the nest

    Get PDF
    In situ monitoring of raptor breeding ecology with field personnel is costly, difficult and demanding. Installing camera traps in raptor nests can provide researchers with diverse information and long-term monitoring. Furthermore, it allows for relatively cheap data collection. However, comparisons between camera traps and other methods are important to allow comparisons of results between different studies. This thesis aims to investigate the potential of camera traps to monitor Golden Eagle breeding phenology and explore what events are suitable for quantifying with cameras. Data from 54 cameras, each monitoring one unique Golden Eagle breeding, was used. Nine of these cameras monitored the nest for almost a full year. With this dataset I was able to estimate all chosen phenological events, only using photographs from the camera traps. My results show comparable estimates with established facts for Sweden and previous studies from other countries. This demonstrates the potential of this technology to be used for ecological studies of breeding raptors
    • …
    corecore