1,663 research outputs found

    Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data

    Get PDF
    The recent development of more sophisticated spectroscopic methods allows acquisition of high dimensional datasets from which valuable information may be extracted using multivariate statistical analyses, such as dimensionality reduction and automatic classification (supervised and unsupervised). In this work, a supervised classification through a partial least squares discriminant analysis (PLS-DA) is performed on the hy- perspectral data. The obtained results are compared with those obtained by the most commonly used classification approaches

    Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data

    Get PDF
    The recent development of more sophisticated spectroscopic methods allows acqui- sition of high dimensional datasets from which valuable information may be extracted using multivariate statistical analyses, such as dimensionality reduction and automatic classification (supervised and unsupervised). In this work, a supervised classification through a partial least squares discriminant analysis (PLS-DA) is performed on the hy- perspectral data. The obtained results are compared with those obtained by the most commonly used classification approaches

    Proximal hyperspectral imaging detects diurnal and drought-induced changes in maize physiology

    Get PDF
    Hyperspectral imaging is a promising tool for non-destructive phenotyping of plant physiological traits, which has been transferred from remote to proximal sensing applications, and from manual laboratory setups to automated plant phenotyping platforms. Due to the higher resolution in proximal sensing, illumination variation and plant geometry result in increased non-biological variation in plant spectra that may mask subtle biological differences. Here, a better understanding of spectral measurements for proximal sensing and their application to study drought, developmental and diurnal responses was acquired in a drought case study of maize grown in a greenhouse phenotyping platform with a hyperspectral imaging setup. The use of brightness classification to reduce the illumination-induced non-biological variation is demonstrated, and allowed the detection of diurnal, developmental and early drought-induced changes in maize reflectance and physiology. Diurnal changes in transpiration rate and vapor pressure deficit were significantly correlated with red and red-edge reflectance. Drought-induced changes in effective quantum yield and water potential were accurately predicted using partial least squares regression and the newly developed Water Potential Index 2, respectively. The prediction accuracy of hyperspectral indices and partial least squares regression were similar, as long as a strong relationship between the physiological trait and reflectance was present. This demonstrates that current hyperspectral processing approaches can be used in automated plant phenotyping platforms to monitor physiological traits with a high temporal resolution

    A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict Curcumin Concentration in Fresh Turmeric Rhizomes

    Get PDF
    Hyperspectral image (HSI) analysis has the potential to estimate organic compounds in plants and foods. Curcumin is an important compound used to treat a range of medical conditions. Therefore, a method to rapidly determine rhizomes with high curcumin content on-farm would be of significant advantage for farmers. Curcumin content of rhizomes varies within, and between varieties but current chemical analysis methods are expensive and time consuming. This study compared curcumin in three turmeric (Curcuma longa) varieties and examined the potential for laboratory-based HSI to rapidly predict curcumin using the visible–near infrared (400–1000 nm) spectrum. Hyperspectral images (n = 152) of the fresh rhizome outer-skin and flesh were captured, using three local varieties (yellow, orange, and red). Distribution of curcuminoids and total curcumin was analysed. Partial least squares regression (PLSR) models were developed to predict total curcumin concentrations. Total curcumin and the proportion of three curcuminoids differed significantly among all varieties. Red turmeric had the highest total curcumin concentration (0.83 ± 0.21%) compared with orange (0.37 ± 0.12%) and yellow (0.02 ± 0.02%). PLSR models predicted curcumin using raw spectra of rhizome flesh and pooled data for all three varieties (R2c = 0.83, R2p = 0.55, ratio of prediction to deviation (RPD) = 1.51) and was slightly improved by using images of a single variety (orange) only (R2c = 0.85, R2p = 0.62, RPD = 1.65). However, prediction of curcumin using outer-skin of rhizomes was poor (R2c = 0.64, R2p = 0.37, RPD = 1.28). These models can discriminate between ‘low’ and ‘high’ values and so may be adapted into a two-level grading system. HSI has the potential to help identify turmeric rhizomes with high curcumin concentrations and allow for more efficient refinement into curcumin for medicinal purposes

    Dimensionality reduction and simultaneous classication approaches for complex data: methods and applications

    Get PDF
    Statistical learning (SL) is the study of the generalizable extraction of knowledge from data (Friedman et al. 2001). The concept of learning is used when human expertise does not exist, humans are unable to explain their expertise, solution changes in time, solution needs to be adapted to particular cases. The principal algorithms used in SL are classified in: (i) supervised learning (e.g. regression and classification), it is trained on labelled examples, i.e., input where the desired output is known. In other words, supervised learning algorithm attempts to generalize a function or mapping from inputs to outputs which can then be used speculatively to generate an output for previously unseen inputs; (ii) unsupervised learning (e.g. association and clustering), it operates on unlabeled examples, i.e., input where the desired output is unknown, in this case the objective is to discover structure in the data (e.g. through a cluster analysis), not to generalize a mapping from inputs to outputs; (iii) semi-supervised, it combines both labeled and unlabeled examples to generate an appropriate function or classifier. In a multidimensional context, when the number of variables is very large, or when it is believed that some of these do not contribute much to identify the groups structure in the data set, researchers apply a continuous model for dimensionality reduction as principal component analysis, factorial analysis, correspondence analy- sis, etc., and sequentially a discrete clustering model on the object scores computed as K-means, mixture models, etc. This approach is called tandem analysis (TA) by Arabie & Hubert (1994). However, De Sarbo et al. (1990) and De Soete & Carrol (1994) warn against this approach, because the methods for dimension reduction may identify dimensions that do not necessarily contribute much to perceive the groups structure in the data and that, on the contrary, may obscure or mask the groups structure that could exist in the data. A solution to this problem is given by a methodology that includes the simultaneous detection of factors and clusters on the computed scores. In the case of continuous data, many alternative methods combining cluster analysis and the search for a reduced set of factors have been proposed, focusing on factorial meth- ods, multidimensional scaling or unfolding analysis and clustering (e.g., Heiser 1993, De Soete & Heiser 1993). De Soete & Carroll (1994) proposed an alternative to the K-means procedure, named reduced K-means (RKM), which appeared to equal the earlier proposed projection pursuit clustering (PPC) (Bolton & Krzanowski 2012). RKM simultaneously searches for a clustering of objects, based on the K-means criterion (MacQueen 1967), and a dimensionality reduction of the variables, based on the principal component analysis (PCA). However, this approach may fail to recover the clustering of objects when the data contain much variance in directions orthogonal to the subspace of the data in which the clusters reside (Timmerman et al. 2010). To solve this problem, Vichi & Kiers (2001), proposed the factorial K-means (FKM) model. FKM combines K-means cluster analysis with PCA, then finding the best subspace that best represents the clustering structure in the data. In other terms FKM works in the reduced space, and simultaneously searches the best partition of objects based on the use of K-means criterion, represented by the best reduced orthogonal space, based on the use of PCA. When categorical variables are observed, TA corresponds to apply first multiple correspondence analysis (MCA) and subsequently the K-means clustering on the achieved factors. Hwang et al (2007) proposed an extension of MCA that takes into account cluster-level heterogeneity in respondents’ preferences/choices. The method involves combining MCA and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables while the latter is used for identifying relatively homogeneous clusters of respondents. In the last years, the dimensionality reduction problem is very known also in other statistical contexts such as structural equation modeling (SEM). In fact, in a wide range of SEMs applications, the assumption that data are collected from a single ho- mogeneous population, is often unrealistic, and the identification of different groups (clusters) of observations constitutes a critical issue in many fields. Following this research idea, in this doctoral thesis we propose a good review on the more recent statistical models used to solve the dimensionality problem discussed above. In particular, in the first chapter we show an application on hyperspectral data classification using the most used discriminant functions to solve the high di- mensionality problem, e.g., the partial least squares discriminant analysis (PLS-DA); in the second chapter we present the multiple correspondence K-means (MCKM) model proposed by Fordellone & Vichi (2017), which identifies simultaneously the best partition of the N objects described by the best orthogonal linear combination of categorical variables according to a single objective function; finally, in the third chapter we present the partial least squares structural equation modeling K-means (PLS-SEM-KM) proposed by Fordellone & Vichi (2018), which identifies simultane- ously the best partition of the N objects described by the best causal relationship among the latent constructs

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems
    corecore