852 research outputs found

    Are patient specific meshes required for EIT head imaging?

    Get PDF
    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma

    A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head

    Get PDF
    Finite element (FE) methods are widely used in electrical impedance tomography (EIT) to enable rapid image reconstruction of different tissues based on their electrical conductivity. For EIT of brain function, anatomically-accurate (head-shaped) FE meshes have been shown to improve the quality of the reconstructed images. Unfortunately, given the lack of a computational protocol to generate patient-specific meshes suitable for EIT, production of such meshes is currently ad hoc and therefore very time consuming. Here we describe a robust protocol for rapid generation of patient-specific FE meshes from MRI or CT scan data. Most of the mesh generation process is automated and uses freely available user-friendly software. Other necessary custom scripts are provided as supplementary online data and are fully documented. The patient scan data is segmented into four surfaces: brain, cerebrospinal fluid, skull and scalp. The segmented surfaces are then triangulated and used to generate a global mesh of tetrahedral elements. The resulting meshes exhibit high quality when tested with different criteria and were validated in computational simulations. The proposed protocol provides a rapid and practicable method for generation of patient-specific FE meshes of the human head that are suitable for EIT. This method could eventually be extended to other body regions and might confer benefits with other imaging techniques such as optical tomography or EEG inverse source imaging

    Improving the forward model for electrical impedance tomography of brain function through rapid generation of subject specific finite element models

    Get PDF
    Electrical Impedance Tomography (EIT) is a non-invasive imaging method which allows internal electrical impedance of any conductive object to be imaged by means of current injection and surface voltage measurements through an array of externally applied electrodes. The successful generation of the image requires the simulation of the current injection patterns on either an analytical or a numerical model of the domain under examination, known as the forward model, and using the resulting voltage data in the inverse solution from which images of conductivity changes can be constructed. Recent research strongly indicates that geometric and anatomical conformance of the forward model to the subject under investigation significantly affects the quality of the images. This thesis focuses mainly on EIT of brain function and describes a novel approach for the rapid generation of patient or subject specific finite element models for use as the forward model. After introduction of the topic, methods of generating accurate finite element (FE) models using commercially available Computer-Aided Design (CAD) tools are described and show that such methods, though effective and successful, are inappropriate for time critical clinical use. The feasibility of warping or morphing a finite element mesh as a means of reducing the lead time for model generation is then presented and demonstrated. This leads on to the description of methods of acquiring and utilising known system geometry, namely the positions of electrodes and registration landmarks, to construct an accurate surface of the subject, the results of which are successfully validated. The outcome of this procedure is then used to specify boundary conditions to a mesh warping algorithm based on elastic deformation using well-established continuum mechanics procedures. The algorithm is applied to a range of source models to empirically establish optimum values for the parameters defining the problem which can successfully generate meshes of acceptable quality in terms of discretization errors and which more accurately define the geometry of the target subject. Further validation of the algorithm is performed by comparison of boundary voltages and image reconstructions from simulated and laboratory data to demonstrate that benefits in terms of image artefact reduction and localisation of conductivity changes can be gained. The processes described in the thesis are evaluated and discussed and topics of further work and application are described

    Numerical Complex Analysis Method for Parameters Identification of Anisotropic Media Using Applied Quasipotential Tomographic Data. Part 1: Problem Statement and its Approximation

    No full text
    The approach to the solving of gradient problems of parameters identification of quasiideal fields with using applied quasipotential tomographic data based on numerical complex analysis methods is transferred to cases of anisotropic media. We, similar to the existing works of world scientists, some additional information about the nature of the distribution of conductivity inside the domain (research object) is considered a priori known. However, in opposite to the traditional approaches to the statement and solving the problems of electrical impedance tomography, we set the local velocities distribution of a substance (liquid, current) in addition to the averaged potential at the contact sections of plate and body and at other sections (stream lines), we set the potential distribution (according to experimental data, which we approximate using splines, Bezier curves, etc.). Generation of initial data at the boundary of the investigated object is carried out in accordance with the polar model of current injection and a given sum of eigenvalues of the conductivity tensor of the medium. The presence of this kind of data greatly accelerates the process of further solving the problem, which is convenient, in particular, when verifying the method that developed by authors. The corresponding problem is reduced to the iterative solving of a series of problems for the Laplace type equations, where instead of «boundary numerical analogues of the Cauchy-Riemann type equations » appear the ratio of quasiorthogonality with using special types of optimization conditions. In particular: the minimizing functional is constructed by taking into account the Cauchy-Riemann type conditions, the relation between eigenvalues of corresponding anisotropy tensor and also regularizing term; the condition-restriction is built based on ellipticity conditions.Підхід до розв’язання градієнтних задач ідентифікації параметрів квазіідеальних полів за даними томографії прикладених квазіпотенціалів на основі числових методів комплексного аналізу перенесено на випадки анізотропних середовищ. При цьому, аналогічно до існуючих робіт світових вчених, апріорно відомими вважаються деякі додаткові відомості про характер розподілу провідності всередині області (об’єкта дослідження). Проте, на відміну від традиційних підходів до постановки та розв’язання задач електроімпедансної томографії, на ділянках контакту пластинки і тіла окрім усередненого потенціалу тут задається ще й розподіл локальних швидкостей речовини (рідини, струму), а на інших ділянках (лініях течії) — розподіл потенціалу (за експериментальними даними, які апроксимуємо із застосуванням сплайнів, кривих Безьє тощо). Генерація вихідних даних на межі досліджуваного об’єкта здійснюється відповідно до полярної моделі (схеми) інжекції струму при заданій сумі власних значень тензора провідності середовища. Наявність такого виду даних значно пришвидшує процес подальшого розв’язання поставленої задачі, що зручно, зокрема, при верифікації розробленого авторами методу. Відповідна задача зводиться до ітераційного розв’язання серії задач для рівнянь типу Лапласа, де замість «приграничних числових аналогів рівнянь типу Коші-Рімана» фігурують співвідношення квазіортогональності за спеціальних типів умов оптимізації. А саме: мінімізуючий функціонал побудований з урахуванням умов типу Коші-Рімана, співвідношення між відповідними тензору анізотропії власними значеннями, а також регуляризуючого доданку; умови-обмеження сформовані на основі умов еліптичності

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Preliminary studies in imaging neuronal depolarization in the brain with electrical or magnetic detection impedance tomography.

    Get PDF
    Electrical impedance Tomography (EIT) is a novel medical imaging method which has the potential to provide the revolutionary advance of a method to image fast neural activity non-invasively. by imaging electrical impedance changes over milliseconds which occur when neuronal ion channels open during activity. These changes have been estimated to be c.1% locally in cerebral cortex, if measured with applied current below 100Hz. The purpose of this work was to determine if such changes could be reproducibly recorded in humans non invasive First, a novel recessed electrode was designed and tested to determine to enable a maximal current of 1mA to be applied to the scalp without causing painful skin sensation. Modelling indicated that this produced a peak current density of 0.3A/m2 in underlying cortex, which was below the threshold for stimulation. Next, the signal-to-noise ratio of impedance changes during evoked visual activity was investigated in healthy volunteers with current injected with scalp electrodes and recording of potential by scalp electrodes (Low Frequency EIT) or magnetic field by magnetoencephalography (Magnetic Detection EIT). Numerical FEM simulations predicted that resistivity changes of 1% in the primary7 visual cortex translate into scalp voltage changes of IjiV (0.004%) and external magnetic field changes of 30fT (0.2%) and were independently validated in saline filled tanks. In vivo, similar changes with a signal-to-noise ratio of 3 after averaging for 10 minutes were recorded for both methods the main noise sources were background brain activity and the current source. These studies with non-invasive scalp recording have, for the first time, demonstrated the existence of such changes when measured non-invasively. These are unfortunately too low to enable reliable imaging within a realistic recording time but support the view that such imaging could be possible in animal or human epileptic studies with electrodes placed on the brain or non-invasively following technological improvements this further work is currently in progress
    corecore