822 research outputs found

    Adaptive waveform design for cognitive radar

    Get PDF
    Advances in technology, especially in sensing, robotics, wireless communications, hardware capabilities and the constant need to confront not only the existing but also new and advanced threats are pushing for the need of advanced radar techniques. In this context, Cognitive Radar (CR) is visualized as the next generation multifunctional, smart and adaptive radar that extends its capabilities and responsibilities far beyond the traditional radar. CR incorporates knowledge gained by the interaction with the environment into its operation therefore forming a closed-loop system aiming to enhance the system performance. A very important element of the CR operation is the ability to adaptively design the transmitted waveforms based on the radar objective and the changes in the environment. In this thesis, we present the different aspects involved in the Cognitive Radar concept with deeper focus on the adaptive waveform design of the system aiming to improve the tracking performance. A method of adaptive waveform design within the sensor management problem ensuring that the total transmitted power is reduced compared to the transmission of a fixed waveform is proposed and finally a promising direction towards the multi-sensor resource allocation and waveform design is presented

    Joint transmitter selection and resource management strategy based on low probability of intercept optimization for distributed radar networks

    Get PDF
    In this paper, a joint transmitter selection and resource management (JTSRM) strategy based on low probability of intercept (LPI) is proposed for target tracking in distributed radar network system. The basis of the JTSRM strategy is to utilize the optimization technique to control transmitting resources of radar networks in order to improve the LPI performance, while guaranteeing a specified target tracking accuracy. The weighted intercept probability and transmit power of radar networks is defined and subsequently employed as the optimization criterion for the JTSRM strategy. The resulting optimization problem is to minimize the LPI performance criterion of radar networks by optimizing the revisit interval, dwell time, transmitter selection, and transmit power subject to a desired target tracking performance and some resource constraints. An efficient and fast three‐step solution technique is also developed to solve this problem. The presented mechanism implements the optimal working parameters based on the feedback information in the tracking recursion cycle in order to improve the LPI performance for radar networks. Numerical simulations are provided to verify the superior performance of the proposed JTSRM strategy

    Cognitive radar network design and applications

    Get PDF
    PhD ThesisIn recent years, several emerging technologies in modern radar system design are attracting the attention of radar researchers and practitioners alike, noteworthy among which are multiple-input multiple-output (MIMO), ultra wideband (UWB) and joint communication-radar technologies. This thesis, in particular focuses upon a cognitive approach to design these modern radars. In the existing literature, these technologies have been implemented on a traditional platform in which the transmitter and receiver subsystems are discrete and do not exchange vital radar scene information. Although such radar architectures benefit from these mentioned technological advances, their performance remains sub-optimal due to the lack of exchange of dynamic radar scene information between the subsystems. Consequently, such systems are not capable to adapt their operational parameters “on the fly”, which is in accordance with the dynamic radar environment. This thesis explores the research gap of evaluating cognitive mechanisms, which could enable modern radars to adapt their operational parameters like waveform, power and spectrum by continually learning about the radar scene through constant interactions with the environment and exchanging this information between the radar transmitter and receiver. The cognitive feedback between the receiver and transmitter subsystems is the facilitator of intelligence for this type of architecture. In this thesis, the cognitive architecture is fused together with modern radar systems like MIMO, UWB and joint communication-radar designs to achieve significant performance improvement in terms of target parameter extraction. Specifically, in the context of MIMO radar, a novel cognitive waveform optimization approach has been developed which facilitates enhanced target signature extraction. In terms of UWB radar system design, a novel cognitive illumination and target tracking algorithm for target parameter extraction in indoor scenarios has been developed. A cognitive system architecture and waveform design algorithm has been proposed for joint communication-radar systems. This thesis also explores the development of cognitive dynamic systems that allows the fusion of cognitive radar and cognitive radio paradigms for optimal resources allocation in wireless networks. In summary, the thesis provides a theoretical framework for implementing cognitive mechanisms in modern radar system design. Through such a novel approach, intelligent illumination strategies could be devised, which enable the adaptation of radar operational modes in accordance with the target scene variations in real time. This leads to the development of radar systems which are better aware of their surroundings and are able to quickly adapt to the target scene variations in real time.Newcastle University, Newcastle upon Tyne: University of Greenwich

    Mathematical optimization and game theoretic methods for radar networks

    Get PDF
    Radar systems are undoubtedly included in the hall of the most momentous discoveries of the previous century. Although radars were initially used for ship and aircraft detection, nowadays these systems are used in highly diverse fields, expanding from civil aviation, marine navigation and air-defence to ocean surveillance, meteorology and medicine. Recent advances in signal processing and the constant development of computational capabilities led to radar systems with impressive surveillance and tracking characteristics but on the other hand the continuous growth of distributed networks made them susceptible to multisource interference. This thesis aims at addressing vulnerabilities of modern radar networks and further improving their characteristics through the design of signal processing algorithms and by utilizing convex optimization and game theoretic methods. In particular, the problems of beamforming, power allocation, jammer avoidance and uncertainty within the context of multiple-input multiple-output (MIMO) radar networks are addressed. In order to improve the beamforming performance of phased-array and MIMO radars employing two-dimensional arrays of antennas, a hybrid two-dimensional Phased-MIMO radar with fully overlapped subarrays is proposed. The work considers both adaptive (convex optimization, CAPON beamformer) and non-adaptive (conventional) beamforming techniques. The transmit, receive and overall beampatterns of the Phased-MIMO model are compared with the respective beampatterns of the phased-array and the MIMO schemes, proving that the hybrid model provides superior capabilities in beamforming. By incorporating game theoretic techniques in the radar field, various vulnerabilities and problems can be investigated. Hence, a game theoretic power allocation scheme is proposed and a Nash equilibrium analysis for a multistatic MIMO network is performed. A network of radars is considered, organized into multiple clusters, whose primary objective is to minimize their transmission power, while satisfying a certain detection criterion. Since no communication between the clusters is assumed, non-cooperative game theoretic techniques and convex optimization methods are utilized to tackle the power adaptation problem. During the proof of the existence and the uniqueness of the solution, which is also presented, important contributions on the SINR performance and the transmission power of the radars have been derived. Game theory can also been applied to mitigate jammer interference in a radar network. Hence, a competitive power allocation problem for a MIMO radar system in the presence of multiple jammers is investigated. The main objective of the radar network is to minimize the total power emitted by the radars while achieving a specific detection criterion for each of the targets-jammers, while the intelligent jammers have the ability to observe the radar transmission power and consequently decide its jamming power to maximize the interference to the radar system. In this context, convex optimization methods, noncooperative game theoretic techniques and hypothesis testing are incorporated to identify the jammers and to determine the optimal power allocation. Furthermore, a proof of the existence and the uniqueness of the solution is presented. Apart from resource allocation applications, game theory can also address distributed beamforming problems. More specifically, a distributed beamforming and power allocation technique for a radar system in the presence of multiple targets is considered. The primary goal of each radar is to minimize its transmission power while attaining an optimal beamforming strategy and satisfying a certain detection criterion for each of the targets. Initially, a strategic noncooperative game (SNG) is used, where there is no communication between the various radars of the system. Subsequently, a more coordinated game theoretic approach incorporating a pricing mechanism is adopted. Furthermore, a Stackelberg game is formulated by adding a surveillance radar to the system model, which will play the role of the leader, and thus the remaining radars will be the followers. For each one of these games, a proof of the existence and uniqueness of the solution is presented. In the aforementioned game theoretic applications, the radars are considered to know the exact radar cross section (RCS) parameters of the targets and thus the exact channel gains of all players, which may not be feasible in a real system. Therefore, in the last part of this thesis, uncertainty regarding the channel gains among the radars and the targets is introduced, which originates from the RCS fluctuations of the targets. Bayesian game theory provides a framework to address such problems of incomplete information. Hence, a Bayesian game is proposed, where each radar egotistically maximizes its SINR, under a predefined power constraint

    A Survey on Fundamental Limits of Integrated Sensing and Communication

    Get PDF
    The integrated sensing and communication (ISAC), in which the sensing and communication share the same frequency band and hardware, has emerged as a key technology in future wireless systems due to two main reasons. First, many important application scenarios in fifth generation (5G) and beyond, such as autonomous vehicles, Wi-Fi sensing and extended reality, requires both high-performance sensing and wireless communications. Second, with millimeter wave and massive multiple-input multiple-output (MIMO) technologies widely employed in 5G and beyond, the future communication signals tend to have high-resolution in both time and angular domain, opening up the possibility for ISAC. As such, ISAC has attracted tremendous research interest and attentions in both academia and industry. Early works on ISAC have been focused on the design, analysis and optimization of practical ISAC technologies for various ISAC systems. While this line of works are necessary, it is equally important to study the fundamental limits of ISAC in order to understand the gap between the current state-of-the-art technologies and the performance limits, and provide useful insights and guidance for the development of better ISAC technologies that can approach the performance limits. In this paper, we aim to provide a comprehensive survey for the current research progress on the fundamental limits of ISAC. Particularly, we first propose a systematic classification method for both traditional radio sensing (such as radar sensing and wireless localization) and ISAC so that they can be naturally incorporated into a unified framework. Then we summarize the major performance metrics and bounds used in sensing, communications and ISAC, respectively. After that, we present the current research progresses on fundamental limits of each class of the traditional sensing and ISAC systems. Finally, the open problems and future research directions are discussed

    Joint Transmit Resource Management and Waveform Selection Strategy for Target Tracking in Distributed Phased Array Radar Network

    Get PDF
    In this paper, a joint transmit resource management and waveform selection (JTRMWS) strategy is put forward for target tracking in distributed phased array radar network. We establish the problem of joint transmit resource and waveform optimization as a dual-objective optimization model. The key idea of the proposed JTRMWS scheme is to utilize the optimization technique to collaboratively coordinate the transmit power, dwell time, waveform bandwidth, and pulse length of each radar node in order to improve the target tracking accuracy and low probability of intercept (LPI) performance of distributed phased array radar network, subject to the illumination resource budgets and waveform library limitation. The analytical expressions for the predicted Bayesian Cram\'{e}r-Rao lower bound (BCRLB) and the probability of intercept are calculated and subsequently adopted as the metric functions to evaluate the target tracking accuracy and LPI performance, respectively. It is shown that the JTRMWS problem is a non-linear and non-convex optimization problem, where the above four adaptable parameters are all coupled in the objective functions and constraints. Combined with the particle swarm optimization (PSO) algorithm, an efficient and fast three-stage-based solution technique is developed to deal with the resulting problem. Simulation results are provided to verify the effectiveness and superiority of the proposed JTRMWS algorithm compared with other state-of-the-art benchmarks
    corecore