827 research outputs found

    Vulnerability analysis of satellite-based synchronized smart grids monitoring systems

    Get PDF
    The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks

    Detection and Mitigation of Cyber Attacks on Time Synchronization Protocols for the Smart Grid

    Get PDF
    The current electric grid is considered as one of the greatest engineering achievements of the twentieth century. It has been successful in delivering power to consumers for decades. Nevertheless, the electric grid has recently experienced several blackouts that raised several concerns related to its availability and reliability. The aspiration to provide reliable and efficient energy, and contribute to environment protection through the increasing utilization of renewable energies are driving the need to deploy the grid of the future, the smart grid. It is expected that this grid will be self-healing from power disturbance events, operating resiliently against physical and cyber attack, operating efficiently, and enabling new products and services. All these call for a grid with more Information and Communication Technologies (ICT). As such, power grids are increasingly absorbing ICT technologies to provide efficient, secure and reliable two-way communication to better manage, operate, maintain and control electric grid components. On the other hand, the successful deployment of the smart grid is predicated on the ability to secure its operations. Such a requirement is of paramount importance especially in the presence of recent cyber security incidents. Furthermore, those incidents are subject to an augment with the increasing integration of ICT technologies and the vulnerabilities they introduce to the grid. The exploitation of these vulnerabilities might lead to attacks that can, for instance, mask the system observability and initiate cascading failures resulting in undesirable and severe consequences. In this thesis, we explore the security aspects of a key enabling technology in the smart grid, accurate time synchronization. Time synchronization is an immense requirement across the domains of the grid, from generation to transmission, distribution, and consumer premises. We focus on the substation, a basic block of the smart grid system, along with its recommended time synchronization mechanism - the Precision Time Protocol (PTP) - in order to address threats associated with PTP, and propose practical and efficient detection, prevention, mitigation techniques and methodologies that will harden and enhance the security and usability of PTP in a substation. In this respect, we start this thesis with a security assessment of PTP that identifies PTP security concerns, and then address those concerns in the subsequent chapters. We tackle the following main threats associated with PTP: 1) PTP vulnerability to fake timestamp injection through a compromised component 2) PTP vulnerability to the delay attack and 3) The lack of a mechanism that secures the PTP network. Next, and as a direct consequence of the importance of time synchronization in the smart grid, we consider the wide area system to demonstrate the vulnerability of relative data alignment in Phasor Data Concentrators to time synchronization attacks. These problems will be extensively studied throughout this thesis, followed by discussions that highlight open research directions worth further investigations

    Time Synchronized Low-voltage Measurements for Smart Grids

    Get PDF
    AbstractThis paper analyzes possible future development of Smart Grids based on more detailed monitoring of grids. The authors propose measurement methods for the low-voltage level of Smart Grids, and for this purpose they exploit approaches known from the corresponding high-voltage level. Using time synchronization and intelligent end-point devices enables us to collect essential data for faster detection of illegal consumers, branch overload detection, power-quality verification, and other processes. Such information can improve the overall stability and reliability of a grid by covering the low-voltage level that is characterized by the dynamic change of topology or different disturbance sources and has gained the status of being the primary source for the majority of customers

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    A Software Framework for Aircraft Simulation

    Get PDF
    The National Aeronautics and Space Administration Dryden Flight Research Center has a long history in developing simulations of experimental fixed-wing aircraft from gliders to suborbital vehicles on platforms ranging from desktop simulators to pilot-in-the-loop/aircraft-in-the-loop simulators. Regardless of the aircraft or simulator hardware, much of the software framework is common to all NASA Dryden simulators. Some of this software has withstood the test of time, but in recent years the push toward high-fidelity user-friendly simulations has resulted in some significant changes. This report presents an overview of the current NASA Dryden simulation software framework and capabilities with an emphasis on the new features that have permitted NASA to develop more capable simulations while maintaining the same staffing levels

    A complete system for controlling and monitoring the timing of the LHCb experiment

    Get PDF
    The LHCb experiment at CERN will study the results of the production of B/antiB in the LHC accelerator mesons with the higher precision ever. It is vital that the experiment is able to record sub-detectors signals at the optimal detector efficiency, referring to the right collision occurring in the LHC ring, and that those signals are stable, clean and reliable. The solution is the development of a complete system to centrally time align and at the same time to monitor the timing of the whole experiment. An electronics custom-made acquisition board, called Beam Phase and Intensity Monitor (BPIM), has the main aim to monitor the beam processing a bipolar signal coming from a dedicated Beam Pick-Up detector, sitting along the LHC ring and whose signal is a clear representation of the bunches of protons. The BPIM is then able to integrate the intensity of the beam and at the same time to compare the phase of the bunch signal with the clock coming from the timing distribution system as well as the phase of the orbit signal with the signal generated from the first beam bunch. The principal applications of the BPIM are to determine the position of the orbit signal locally, to monitor bunch-by-bunch the clock phase with respect to the bunch passing through the detector, to have a clear structure of the beam injected, to determine the exact trigger conditions for sampling events in the detector, to determine the exact trigger conditions for significative events of not, checking whether the detector samples a bunch with protons (or lead ions) or an empty bunch, to produce an empty crossing veto for the sampled events whenever a bunch is absent in the expected location, to have a relative measure of the intensities of bunch, to have instantaneaous information about the presence/absence of beam, and, not less important, to search for ghost bunches. The board is paired with the RF2TTC system developed by the LHC group and whose aim is to control, clean, convert and transmit the bunch clock (~40 MHz) and the orbit clock (~11 KHz) to the the whole experiment. A complete user-friendly interface system, developed using the SCADA software PVSS II with the Distributed Information Management (DIM) system as communication protocol, allows to control and monitor real-time the available information

    Global Synchronization of Asynchronous Computing Systems

    Get PDF
    The MSU ERC UltraScope system consists of a distributed computing system, custom PCI cards, GPS receivers, and a re-radiation system. The UltraScope system allows precision timestamping of events in a distributed application on a system where the CPU and PCI clocks are phase-locked. The goal of this research is to expand the UltraScope system, using software routines and minimal hardware modifications, to allow precision timestamping of events on an asynchronous distributed system. The timestamp process is similar to the Network Time Protocol (NTP) in that it uses a series of timestamps to improve precision. As expected, the precision is less accurate on an asynchronous system than on a synchronous system. Results show that the precision is improved using this sequence of timestamps, and the major error component is due to operating system delays. The errors associated with this timestamping process are characterized using a synchronous system as a baseline
    corecore