18 research outputs found

    Improved terrain type classification using UAV downwash dynamic texture effect

    Get PDF
    The ability to autonomously navigate in an unknown, dynamic environment, while at the same time classifying various terrain types, are significant challenges still faced by the computer vision research community. Addressing these problems is of great interest for the development of collaborative autonomous navigation robots. For example, an Unmanned Aerial Vehicle (UAV) can be used to determine a path, while an Unmanned Surface Vehicle (USV) follows that path to reach the target destination. For the UAV to be able to determine if a path is valid or not, it must be able to identify the type of terrain it is flying over. With the help of its rotor air flow (known as downwash e↵ect), it becomes possible to extract advanced texture features, used for terrain type classification. This dissertation presents a complete analysis on the extraction of static and dynamic texture features, proposing various algorithms and analyzing their pros and cons. A UAV equipped with a single RGB camera was used to capture images and a Multilayer Neural Network was used for the automatic classification of water and non-water-type terrains by means of the downwash e↵ect created by the UAV rotors. The terrain type classification results are then merged into a georeferenced dynamic map, where it is possible to distinguish between water and non-water areas in real time. To improve the algorithms’ processing time, several sequential processes were con verted into parallel processes and executed in the UAV onboard GPU with the CUDA framework achieving speedups up to 10x. A comparison between the processing time of these two processing modes, sequential in the CPU and parallel in the GPU, is also presented in this dissertation. All the algorithms were developed using open-source libraries, and were analyzed and validated both via simulation and real environments. To evaluate the robustness of the proposed algorithms, the studied terrains were tested with and without the presence of the downwash e↵ect. It was concluded that the classifier could be improved by per forming combinations between static and dynamic features, achieving an accuracy higher than 99% in the classification of water and non-water terrain.Dotar equipamentos moveis da funcionalidade de navegação autónoma em ambientes desconhecidos e dinâmicos, ao mesmo tempo que, classificam terrenos do tipo água e não água, são desafios que se colocam atualmente a investigadores na área da visão computacional. As soluções para estes problemas são de grande interesse para a navegação autónoma e a colaboração entre robôs. Por exemplo, um veículo aéreo não tripulado (UAV) pode ser usado para determinar o caminho que um veículo terrestre não tripulado (USV) deve percorrer para alcançar o destino pretendido. Para o UAV conseguir determinar se o caminho é válido ou não, tem de ser capaz de identificar qual o tipo de terreno que está a sobrevoar. Com a ajuda do fluxo de ar gerado pelos motores (conhecido como efeito downwash), é possível extrair características de textura avançadas, que serão usadas para a classificação do tipo de terreno. Esta dissertação apresenta uma análise completa sobre extração de texturas estáticas e dinâmicas, propondo diversos algoritmos e analisando os seus prós e contras. Um UAV equipado com uma única câmera RGB foi usado para capturar as imagens. Para classi ficar automaticamente terrenos do tipo água e não água foi usada uma rede neuronal multicamada e recorreu-se ao efeito de downwash criado pelos motores do UAV. Os re sultados da classificação do tipo de terreno são depois colocados num mapa dinâmico georreferenciado, onde é possível distinguir, em tempo real, terrenos do tipo água e não água. De forma a melhorar o tempo de processamento dos algoritmos desenvolvidos, vários processos sequenciais foram convertidos em processos paralelos e executados na GPU a bordo do UAV, com a ajuda da framework CUDA, tornando o algoritmo até 10x mais rápido. Também são apresentadas nesta dissertação comparações entre o tempo de processamento destes dois modos de processamento, sequencial na CPU e paralelo na GPU. Todos os algoritmos foram desenvolvidos através de bibliotecas open-source, e foram analisados e validados, tanto através de ambientes de simulação como em ambientes reais. Para avaliar a robustez dos algoritmos propostos, os terrenos estudados foram testados com e sem a presença do efeito downwash. Concluiu-se que o classificador pode ser melhorado realizando combinações entre as características de textura estáticas e dinâmicas, alcançando uma precisão superior a 99% na classificação de terrenos do tipo água e não água

    GPS based position control and waypoint navigation of a quad tilt-wing UAV

    Get PDF
    Unmanned aerial vehicles (UAV) are becoming increasingly capable nowadays and the civilian applications and the military tasks that can be carried out by these vehicles are far more critical than before. There have been remarkable advances in the design and development of UAVs. They are equipped with various sensors which make them capable of accomplishing missions in unconstrained environments which are dangerous or effortful for manned aircrafts. Recently, significant interest in unmanned aerial vehicles has directed researchers towards navigation problem of flying vehicles. This thesis work focuses on GPS based position control and waypoint navigation of a quad tilt-wing unmanned aerial vehicle (SUAVI: Sabanci University Unmanned Aerial Vehicle). The vehicle is capable of vertical take-off and landing (VTOL). It can also fly horizontally due to its tilt-wing structure. Mechanical and aerodynamic designs are first outlined. A nonlinear mathematical model expressed in a hybrid frame is then obtained using Newton-Euler formulation which also includes aerodynamics effects such as wind and gusts. Extended Kalman filtering (EKF) using raw IMU measurements is employed to obtain reliable orientation estimates which is crucial for attitude stabilization of the aerial vehicle. A high-level acceleration controller which utilizes GPS data produces roll and pitch references for the low-level attitude controllers for hovering and trajectory tracking of the aerial vehicle. The nonlinear dynamic equations of the vehicle are linearized around nominal operating points in hovering conditions and gravity compensated PID controllers are designed for position and attitude control. Simulations and several real flight experiments demonstrate success of the developed position control algorithms

    Outdoor operations of multiple quadrotors in windy environment

    Get PDF
    Coordinated multiple small unmanned aerial vehicles (sUAVs) offer several advantages over a single sUAV platform. These advantages include improved task efficiency, reduced task completion time, improved fault tolerance, and higher task flexibility. However, their deployment in an outdoor environment is challenging due to the presence of wind gusts. The coordinated motion of a multi-sUAV system in the presence of wind disturbances is a challenging problem when considering collision avoidance (safety), scalability, and communication connectivity. Performing wind-agnostic motion planning for sUAVs may produce a sizeable cross-track error if the wind on the planned route leads to actuator saturation. In a multi-sUAV system, each sUAV has to locally counter the wind disturbance while maintaining the safety of the system. Such continuous manipulation of the control effort for multiple sUAVs under uncertain environmental conditions is computationally taxing and can lead to reduced efficiency and safety concerns. Additionally, modern day sUAV systems are susceptible to cyberattacks due to their use of commercial wireless communication infrastructure. This dissertation aims to address these multi-faceted challenges related to the operation of outdoor rotor-based multi-sUAV systems. A comprehensive review of four representative techniques to measure and estimate wind speed and direction using rotor-based sUAVs is discussed. After developing a clear understanding of the role wind gusts play in quadrotor motion, two decentralized motion planners for a multi-quadrotor system are implemented and experimentally evaluated in the presence of wind disturbances. The first planner is rooted in the reinforcement learning (RL) technique of state-action-reward-state-action (SARSA) to provide generalized path plans in the presence of wind disturbances. While this planner provides feasible trajectories for the quadrotors, it does not provide guarantees of collision avoidance. The second planner implements a receding horizon (RH) mixed-integer nonlinear programming (MINLP) model that is integrated with control barrier functions (CBFs) to guarantee collision-free transit of the multiple quadrotors in the presence of wind disturbances. Finally, a novel communication protocol using Ethereum blockchain-based smart contracts is presented to address the challenge of secure wireless communication. The U.S. sUAV market is expected to be worth $92 Billion by 2030. The Association for Unmanned Vehicle Systems International (AUVSI) noted in its seminal economic report that UAVs would be responsible for creating 100,000 jobs by 2025 in the U.S. The rapid proliferation of drone technology in various applications has led to an increasing need for professionals skilled in sUAV piloting, designing, fabricating, repairing, and programming. Engineering educators have recognized this demand for certified sUAV professionals. This dissertation aims to address this growing sUAV-market need by evaluating two active learning-based instructional approaches designed for undergraduate sUAV education. The two approaches leverages the interactive-constructive-active-passive (ICAP) framework of engagement and explores the use of Competition based Learning (CBL) and Project based Learning (PBL). The CBL approach is implemented through a drone building and piloting competition that featured 97 students from undergraduate and graduate programs at NJIT. The competition focused on 1) drone assembly, testing, and validation using commercial off-the-shelf (COTS) parts, 2) simulation of drone flight missions, and 3) manual and semi-autonomous drone piloting were implemented. The effective student learning experience from this competition served as the basis of a new undergraduate course on drone science fundamentals at NJIT. This undergraduate course focused on the three foundational pillars of drone careers: 1) drone programming using Python, 2) designing and fabricating drones using Computer-Aided Design (CAD) and rapid prototyping, and 3) the US Federal Aviation Administration (FAA) Part 107 Commercial small Unmanned Aerial Vehicles (sUAVs) pilot test. Multiple assessment methods are applied to examine the students’ gains in sUAV skills and knowledge and student attitudes towards an active learning-based approach for sUAV education. The use of active learning techniques to address these challenges lead to meaningful student engagement and positive gains in the learning outcomes as indicated by quantitative and qualitative assessments

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Applications of Drones in Atmospheric Chemistry

    Get PDF
    The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere during the Anthropocene. A major technical and scientific challenge is quantifying the resulting fugitive trace gas fluxes under variable meteorological conditions. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating contributions of different processes to radiative forcing. Therefore, the adverse environmental and health effects of undetected gas leaks motivates new methods of detecting, characterizing, and quantifying plumes of fugitive trace gases. Currently, there is no mobile platform able to quantify trace gases at altitudes(UASs), or drones, can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Thus, the research herein has contributed to the advancement of atmospheric, environmental, and analytical chemistry through the development, calibration, validation, and application of small unmanned aerial systems (sUAS). The quantification of atmospheric gases with sUAS is expanding the ability to safely perform environmental monitoring tasks and quickly evaluate the impact of technologies. The experimental findings have developed the sUAS as a platform for atmospheric measurements and demonstrated applications of meteorological and trace gas measurements. The research ultimately enabled novel studies that quantified and modeled the atmospheric transport of trace gases to better understand their impact on environmental and atmospheric chemistry

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis
    corecore