6,935 research outputs found

    Finite automata for caching in matrix product algorithms

    Full text link
    A diagram is introduced for visualizing matrix product states which makes transparent a connection between matrix product factorizations of states and operators, and complex weighted finite state automata. It is then shown how one can proceed in the opposite direction: writing an automaton that ``generates'' an operator gives one an immediate matrix product factorization of it. Matrix product factorizations have the advantage of reducing the cost of computing expectation values by facilitating caching of intermediate calculations. Thus our connection to complex weighted finite state automata yields insight into what allows for efficient caching in matrix product algorithms. Finally, these techniques are generalized to the case of multiple dimensions.Comment: 18 pages, 19 figures, LaTeX; numerous improvements have been made to the manuscript in response to referee feedbac

    Synchronizing weighted automata

    Full text link
    We introduce two generalizations of synchronizability to automata with transitions weighted in an arbitrary semiring K=(K,+,*,0,1). (or equivalently, to finite sets of matrices in K^nxn.) Let us call a matrix A location-synchronizing if there exists a column in A consisting of nonzero entries such that all the other columns of A are filled by zeros. If additionally all the entries of this designated column are the same, we call A synchronizing. Note that these notions coincide for stochastic matrices and also in the Boolean semiring. A set M of matrices in K^nxn is called (location-)synchronizing if M generates a matrix subsemigroup containing a (location-)synchronizing matrix. The K-(location-)synchronizability problem is the following: given a finite set M of nxn matrices with entries in K, is it (location-)synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give sufficient conditions for the semiring K when the problems are PSPACE-complete and show several undecidability results as well, e.g. synchronizability is undecidable if 1 has infinite order in (K,+,0) or when the free semigroup on two generators can be embedded into (K,*,1).Comment: In Proceedings AFL 2014, arXiv:1405.527

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur

    On the decomposition of stochastic cellular automata

    Full text link
    In this paper we present two interesting properties of stochastic cellular automata that can be helpful in analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the average state of each cell during the evolution of the stochastic cellular automaton. The second property shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular automaton.Comment: Submitted to Journal of Computation Science, Special Issue on Cellular Automata Application

    Revisiting LFSMs

    Full text link
    Linear Finite State Machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is Linear Feedback Shift Registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill LFSRs case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.Comment: Submitted to IEEE-I
    corecore