4,994 research outputs found

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    SkILL - a Stochastic Inductive Logic Learner

    Full text link
    Probabilistic Inductive Logic Programming (PILP) is a rel- atively unexplored area of Statistical Relational Learning which extends classic Inductive Logic Programming (ILP). This work introduces SkILL, a Stochastic Inductive Logic Learner, which takes probabilistic annotated data and produces First Order Logic theories. Data in several domains such as medicine and bioinformatics have an inherent degree of uncer- tainty, that can be used to produce models closer to reality. SkILL can not only use this type of probabilistic data to extract non-trivial knowl- edge from databases, but it also addresses efficiency issues by introducing a novel, efficient and effective search strategy to guide the search in PILP environments. The capabilities of SkILL are demonstrated in three dif- ferent datasets: (i) a synthetic toy example used to validate the system, (ii) a probabilistic adaptation of a well-known biological metabolism ap- plication, and (iii) a real world medical dataset in the breast cancer domain. Results show that SkILL can perform as well as a deterministic ILP learner, while also being able to incorporate probabilistic knowledge that would otherwise not be considered

    Learning First-Order Definitions of Functions

    Full text link
    First-order learning involves finding a clause-form definition of a relation from examples of the relation and relevant background information. In this paper, a particular first-order learning system is modified to customize it for finding definitions of functional relations. This restriction leads to faster learning times and, in some cases, to definitions that have higher predictive accuracy. Other first-order learning systems might benefit from similar specialization.Comment: See http://www.jair.org/ for any accompanying file

    A sequence-length sensitive approach to learning biological grammars using inductive logic programming.

    Get PDF
    This thesis aims to investigate if the ideas behind compression principles, such as the Minimum Description Length, can help us to improve the process of learning biological grammars from protein sequences using Inductive Logic Programming (ILP). Contrary to most traditional ILP learning problems, biological sequences often have a high variation in their length. This variation in length is an important feature of biological sequences which should not be ignored by ILP systems. However we have identified that some ILP systems do not take into account the length of examples when evaluating their proposed hypotheses. During the learning process, many ILP systems use clause evaluation functions to assign a score to induced hypotheses, estimating their quality and effectively influencing the search. Traditionally, clause evaluation functions do not take into account the length of the examples which are covered by the clause. We propose L-modification, a way of modifying existing clause evaluation functions so that they take into account the length of the examples which they learn from. An empirical study was undertaken to investigate if significant improvements can be achieved by applying L-modification to a standard clause evaluation function. Furthermore, we generally investigated how ILP systems cope with the length of examples in training data. We show that our L-modified clause evaluation function outperforms our benchmark function in every experiment we conducted and thus we prove that L-modification is a useful concept. We also show that the length of the examples in the training data used by ILP systems does have an undeniable impact on the results

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Probabilistic Inductive Querying Using ProbLog

    Get PDF
    We study how probabilistic reasoning and inductive querying can be combined within ProbLog, a recent probabilistic extension of Prolog. ProbLog can be regarded as a database system that supports both probabilistic and inductive reasoning through a variety of querying mechanisms. After a short introduction to ProbLog, we provide a survey of the different types of inductive queries that ProbLog supports, and show how it can be applied to the mining of large biological networks.Peer reviewe
    • …
    corecore