2,808 research outputs found

    Evaluation and recommendations for work group integration within the Materials and Processes Lab

    Get PDF
    The goal of this study was to evaluate and make recommendations for improving the level of integration of several work groups within the Materials and Processes Lab at the Marshall Space Flight Center. This evaluation has uncovered a variety of projects that could improve the efficiency and operation of the work groups as well as the overall integration of the system. In addition, this study provides the foundation for specification of a computer integrated manufacturing test bed environment in the Materials and Processes Lab

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Stormwater Intelligent Control System (2005)

    Get PDF
    Water restrictions, pollution control, volume balances, and the emergence of stormwater utilities have lead to the development of an automated intelligent system (“I-Water”) for water use and control. With the use of this system, water stored in stormwater ponds or in the surficial aquifer is not discharged to surface waters because it is used to meet water demands, such as, lawn irrigation, environmental protection, agriculture, drinking and industrial uses. The drop in groundwater levels and the increasing use of reclaimed water illustrates a need for alternative water supplies. Ground water depletion is occurring which is adding to the destruction of wetland areas and reduced spring flows. The supply of available reclaimed water continues to rise but so does the demand for irrigation water. The automation, water quality monitoring, and database that an Intelligent Water (“I-Water”) controller provides can make stormwater reuse systems more feasible thus helping to reduce stormwater pollutant loadings, maintain watershed volume balances, and provide an alternative irrigation water supply. Using advanced technology is an efficient and effective way to manage this valuable freshwater resource. Telecommunications has made it possible to monitor water flow, valves, collect data, read instrumentation such as water quality sensors and control things remotely and in \u27real time\u27. Presented in this report is an automated controller integrating multiple sensors, used to collect data that can be monitored daily (if desired) via home or office computers and that can remotely control the flow of water using home or office computers. The automated controller can be operated at the installation site or via telecommunications from a remote site. The “I-Water” will make stormwater volume control using reuse systems more feasible by decreasing O&M costs. Remote on-line monitoring to provide more reliable data at a greater frequency of collection is possible with the “I-Water” or similar systems. The I-Water” will provide access to pollutant monitoring to assure that the stormwater is safe to use for non-potable purposes. The “I-Water” is available for deployment

    Real-time remote monitoring and control system for underground pipelines

    Get PDF
    Underground pipelines suffer from corrosion in soil layers, and this corrosion is accelerated with the increasing of soil thickness due to more water contained. Cathodic protection (CP) is one of the most common methods for controlling corrosion of metals. Its popularity returns to the fact that CP system is simple, cheap, and suitable for many industrial applications. The drawback of the available CP systems is the need to go to the site for gathering data using classical instruments and methods, which is tedious, dangerous, uneconomic, and inaccurate. The main objective of this paper is to present a real-time remote monitoring and control (RT-RMC) system for any CP platform. The work started with implementation of an industrial-like CP prototype to realize the desired task. The implemented CP system consists of two famous CP methods, the sacrificial anodes (SACP) and the impressed current (ICCP). After that, the RT-RMC system is implemented with two techniques, global system for mobile communications(GSM), and web of things (WoT) to facilitate monitoring and control tasks. Experimental results are obtained for voltage and current measurements with different environments, disturbance, and pipe coatings

    A Novel Design of Vitual and Mixed Reality Scenarios for Automation Training

    Get PDF
    A thesis presented to the faculty of the College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree Master of Science by Andrés Salinas-Hernández on April 23, 2021

    Environmental impacts of a digital health and well-being service in elderly living schemes

    Get PDF
    Over the past decade, digitalization and digital technologies (DTs) have undergone rapid evolution, transforming how goods and services are produced and consumed in modern societies. Health and well-being sectors have embraced this digital revolution. Besides the economic and social benefits, digitalization can significantly enhance patient diagnostics and prognostics while improving overall service efficiency. To ensure long-term sustainability, it is important to assess and reduce the environmental impacts of digital services. This article examines the life cycle impacts of a digital service implemented in three elderly living schemes (ELSs) located in the United Kingdom (UK). The digital service consists of six electronic devices (EDs) that enable communication between residents, visitors, staff, and offsite monitoring (OM). The equipment is connected using Power over Ethernet (PoE) technology, which includes smart network switch and uninterruptable power supply units. The digital service's global warming potential (GWP) was estimated at 718–741 kg CO2 eq./resident for two of the ELSs and 1509 kg CO2 eq./resident for a third ELS, considering a service period of 20 years. The reason for the significant difference is the greater use of air conditioner (A/C) units to cool down server rooms and fewer residents in the third scheme. The consumption of electricity was found to be the main contributor to most of the environmental impacts. However, in certain categories such as mineral resource scarcity, freshwater eutrophication, and freshwater and marine ecotoxicity potentials, printed circuit boards (PCBs) were the main contributors. A sensitivity analysis considering different national electricity mixes demonstrated that the French electricity grid promoted the reduction in 14 impact categories, whereas the German, Italian, Spanish and Japanese grids increased on average impacts on most categories. Another sensitivity analysis demonstrates that reducing A/C unit running time by 28% resulted in an average impact reduction of 5.5%, becoming equivalent to the results obtained for the French electricity grid. Finally, extending the expected lifespan of electronic equipment by 20% yielded the highest average decrease in environmental impacts (8.1%). While digitalization has the potential to enhance patient healthcare and reduce costs, it is crucial to carefully assess its environmental impacts and implement mitigation strategies to ensure sustainable development in the healthcare sector.<br/

    TechNews digests: Jan - Nov 2009

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month
    • …
    corecore