1,072 research outputs found

    Higher-level Knowledge, Rational and Social Levels Constraints of the Common Model of the Mind

    Get PDF
    In his famous 1982 paper, Allen Newell [22, 23] introduced the notion of knowledge level to indicate a level of analysis, and prediction, of the rational behavior of a cognitive articial agent. This analysis concerns the investigation about the availability of the agent knowledge, in order to pursue its own goals, and is based on the so-called Rationality Principle (an assumption according to which "an agent will use the knowledge it has of its environment to achieve its goals" [22, p. 17]. By using the Newell's own words: "To treat a system at the knowledge level is to treat it as having some knowledge, some goals, and believing it will do whatever is within its power to attain its goals, in so far as its knowledge indicates" [22, p. 13]. In the last decades, the importance of the knowledge level has been historically and system- atically downsized by the research area in cognitive architectures (CAs), whose interests have been mainly focused on the analysis and the development of mechanisms and the processes governing human and (articial) cognition. The knowledge level in CAs, however, represents a crucial level of analysis for the development of such articial general systems and therefore deserves greater research attention [17]. In the following, we will discuss areas of broad agree- ment and outline the main problematic aspects that should be faced within a Common Model of Cognition [12]. Such aspects, departing from an analysis at the knowledge level, also clearly impact both lower (e.g. representational) and higher (e.g. social) levels

    Needs as mental attitudes. An ontological study for PA's service design.

    Get PDF
    open1noscumanopenBiccheri, LucaBiccheri, Luc

    Computational Modeling of Emotion: Towards Improving the Inter- and Intradisciplinary Exchange

    Get PDF
    International audienceThe past years have seen increasing cooperation between psychology and computer science in the field of computational modeling of emotion. However, to realize its potential, the exchange between the two disciplines, as well as the intradisciplinary coordination, should be further improved. We make three proposals for how this could be achieved. The proposals refer to: 1) systematizing and classifying the assumptions of psychological emotion theories; 2) formalizing emotion theories in implementation-independent formal languages (set theory, agent logics); and 3) modeling emotions using general cognitive architectures (such as Soar and ACT-R), general agent architectures (such as the BDI architecture) or general-purpose affective agent architectures. These proposals share two overarching themes. The first is a proposal for modularization: deconstruct emotion theories into basic assumptions; modularize architectures. The second is a proposal for unification and standardization: Translate different emotion theories into a common informal conceptual system or a formal language, or implement them in a common architecture

    COINVENT: Towards a Computational Concept Invention Theory

    Get PDF
    We aim to develop a computationally feasible, cognitively-inspired, formal model of concept invention, drawing on Fauconnier and Turner’s theory of conceptual blending, and grounding it on a sound mathematical theory of concepts. Conceptual blending, although successfully applied to describing combinational creativity in a varied number of fields, has barely been used at all for implementing creative computational systems, mainly due to the lack of sufficiently precise mathematical characterisations thereof. The model we will define will be based on Goguen’s proposal of a Unified Concept Theory, and will draw from interdisciplinary research results from cognitive science, artificial intelligence, formal methods and computational creativity. To validate our model, we will implement a proof of concept of an autonomous computational creative system that will be evaluated in two testbed scenarios: mathematical reasoning and melodic harmonisation. We envisage that the results of this project will be significant for gaining a deeper scientific understanding of creativity, for fostering the synergy between understanding and enhancing human creativity, and for developing new technologies for autonomous creative systems.The project COINVENT acknowledges the nancial support of the Future and Emerging Tech- nologies (FET) programme within the Seventh Framework Programme for Research of the Eu- ropean Commission, under FET-Open Grant number: 611553Peer Reviewe

    Weighted logics for artificial intelligence : an introductory discussion

    Get PDF
    International audienceBefore presenting the contents of the special issue, we propose a structured introductory overview of a landscape of the weighted logics (in a general sense) that can be found in the Artificial Intelligence literature, highlighting their fundamental differences and their application areas

    Agent Based Modeling in Land-Use and Land-Cover Change Studies

    Get PDF
    Agent based models (ABM) for land use and cover change (LUCC) holds the promise to provide new insight into the processes and patterns of the human and biophysical interactions in ways that have never been explored. Advances in computer technology make it possible to run almost infinite numbers of simulations with multiple heterogeneously shaped actors that reciprocally interact via vertical and horizontal power lines on various levels. Based upon an extensive literature review the basic components for such exercises are explored and discussed. This resulted in a systematic representation of these components consisting of: (1) Spatial static input data, (2) Actor and Actor-group static input data, (3) Spatial dynamic input, (4) Actor and Actor-group dynamic input data, (5) the model with the rules describing the rules, (6) Spatial static output, (7) Actor and Actor-group static output, (8) Dynamic output of Actor behaviour changes, (9) Dynamic output of actor-group behavioural changes, (10) Dynamic output of spatial patterns, (11) Dynamic output of temporal patterns. This representation proves to be epistemologically useful in the analysis of the relationships between the ABM LUCC components. In this paper, this representation is also used to enumerate the strengths and limitations of agent based modelling in LUCC
    • …
    corecore