563 research outputs found

    Checkpointing of parallel applications in a Grid environment

    Get PDF
    The Grid environment is generic, heterogeneous, and dynamic with lots of unreliable resources making it very exposed to failures. The environment is unreliable because it is geographically dispersed involving multiple autonomous administrative domains and it is composed of a large number of components. Examples of failures in the Grid environment can be: application crash, Grid node crash, network failures, and Grid system component failures. These types of failures can affect the execution of parallel/distributed application in the Grid environment and so, protections against these faults are crucial. Therefore, it is essential to develop efficient fault tolerant mechanisms to allow users to successfully execute Grid applications. One of the research challenges in Grid computing is to be able to develop a fault tolerant solution that will ensure Grid applications are executed reliably with minimum overhead incurred. While checkpointing is the most common method to achieve fault tolerance, there is still a lot of work to be done to improve the efficiency of the mechanism. This thesis provides an in-depth description of a novel solution for checkpointing parallel applications executed on a Grid. The checkpointing mechanism implemented allows to checkpoint an application at regions where there is no interprocess communication involved and therefore reducing the checkpointing overhead and checkpoint size

    A Survey of Checkpointing Algorithms in Mobile Ad Hoc Network

    Get PDF
    Checkpoint is defined as a fault tolerant technique that is a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. If there is a failure, computation may be restarted from the current checkpoint instead of repeating the computation from beginning. Checkpoint based rollback recovery is one of the widely used technique used in various areas like scientific computing, database, telecommunication and critical applications in distributed and mobile ad hoc network. The mobile ad hoc network architecture is one consisting of a set of self configure mobile hosts capable of communicating with each other without the assistance of base stations. The main problems of this environment are insufficient power and limited storage capacity, so the checkpointing is major challenge in mobile ad hoc network. This paper presents the review of the algorithms, which have been reported for checkpointing approaches in mobile ad hoc network

    Checkpoint-based forward recovery using lookahead execution and rollback validation in parallel and distributed systems

    Get PDF
    This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR

    Synthesis of Fault-Tolerant Embedded Systems

    Get PDF
    This work addresses the issue of design optimization for faulttolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements are considered, and the timing constraints of the application are satisfied. 1
    • …
    corecore