3 research outputs found

    Use of Accumulated Entropies for Automated Detection of Congestive Heart Failure in Flexible Analytic Wavelet Transform Framework Based on Short-Term HRV Signals

    No full text
    In the present work, an automated method to diagnose Congestive Heart Failure (CHF) using Heart Rate Variability (HRV) signals is proposed. This method is based on Flexible Analytic Wavelet Transform (FAWT), which decomposes the HRV signals into different sub-band signals. Further, Accumulated Fuzzy Entropy (AFEnt) and Accumulated Permutation Entropy (APEnt) are computed over cumulative sums of these sub-band signals. This provides complexity analysis using fuzzy and permutation entropies at different frequency scales. We have extracted 20 features from these signals obtained at different frequency scales of HRV signals. The Bhattacharyya ranking method is used to rank the extracted features from the HRV signals of three different lengths (500, 1000 and 2000 samples). These ranked features are fed to the Least Squares Support Vector Machine (LS-SVM) classifier. Our proposed system has obtained a sensitivity of 98.07%, specificity of 98.33% and accuracy of 98.21% for the 500-sample length of HRV signals. Our system yielded a sensitivity of 97.95%, specificity of 98.07% and accuracy of 98.01% for HRV signals of a length of 1000 samples and a sensitivity of 97.76%, specificity of 97.67% and accuracy of 97.71% for signals corresponding to the 2000-sample length of HRV signals. Our automated system can aid clinicians in the accurate detection of CHF using HRV signals. It can be installed in hospitals, polyclinics and remote villages where there is no access to cardiologists

    Preface

    Get PDF

    A Systematic Review and Meta-Analysis of the Incidence of Injury in Professional Female Soccer

    Get PDF
    The epidemiology of injury in male professional football is well documented and has been used as a basis to monitor injury trends and implement injury prevention strategies. There are no systematic reviews that have investigated injury incidence in women’s professional football. Therefore, the extent of injury burden in women’s professional football remains unknown. PURPOSE: The primary aim of this study was to calculate an overall incidence rate of injury in senior female professional soccer. The secondary aims were to provide an incidence rate for training and match play. METHODS: PubMed, Discover, EBSCO, Embase and ScienceDirect electronic databases were searched from inception to September 2018. Two reviewers independently assessed study quality using the Strengthening the Reporting of Observational Studies in Epidemiology statement using a 22-item STROBE checklist. Seven prospective studies (n=1137 professional players) were combined in a pooled analysis of injury incidence using a mixed effects model. Heterogeneity was evaluated using the Cochrane Q statistic and I2. RESULTS: The epidemiological incidence proportion over one season was 0.62 (95% CI 0.59 - 0.64). Mean total incidence of injury was 3.15 (95% CI 1.54 - 4.75) injuries per 1000 hours. The mean incidence of injury during match play was 10.72 (95% CI 9.11 - 12.33) and during training was 2.21 (95% CI 0.96 - 3.45). Data analysis found a significant level of heterogeneity (total Incidence, X2 = 16.57 P < 0.05; I2 = 63.8%) and during subsequent sub group analyses in those studies reviewed (match incidence, X2 = 76.4 (d.f. = 7), P <0.05; I2 = 90.8%, training incidence, X2 = 16.97 (d.f. = 7), P < 0.05; I2 = 58.8%). Appraisal of the study methodologies revealed inconsistency in the use of injury terminology, data collection procedures and calculation of exposure by researchers. Such inconsistencies likely contribute to the large variance in the incidence and prevalence of injury reported. CONCLUSIONS: The estimated risk of sustaining at least one injury over one football season is 62%. Continued reporting of heterogeneous results in population samples limits meaningful comparison of studies. Standardising the criteria used to attribute injury and activity coupled with more accurate methods of calculating exposure will overcome such limitations
    corecore