18,502 research outputs found

    Automating the construction of scene classifiers for content-based video retrieval

    Get PDF
    This paper introduces a real time automatic scene classifier within content-based video retrieval. In our envisioned approach end users like documentalists, not image processing experts, build classifiers interactively, by simply indicating positive examples of a scene. Classification consists of a two stage procedure. First, small image fragments called patches are classified. Second, frequency vectors of these patch classifications are fed into a second classifier for global scene classification (e.g., city, portraits, or countryside). The first stage classifiers can be seen as a set of highly specialized, learned feature detectors, as an alternative to letting an image processing expert determine features a priori. We present results for experiments on a variety of patch and image classes. The scene classifier has been used successfully within television archives and for Internet porn filtering

    Detecting the presence of large buildings in natural images

    Get PDF
    This paper addresses the issue of classification of lowlevel features into high-level semantic concepts for the purpose of semantic annotation of consumer photographs. We adopt a multi-scale approach that relies on edge detection to extract an edge orientation-based feature description of the image, and apply an SVM learning technique to infer the presence of a dominant building object in a general purpose collection of digital photographs. The approach exploits prior knowledge on the image context through an assumption that all input images are �outdoor�, i.e. indoor/outdoor classification (the context determination stage) has been performed. The proposed approach is validated on a diverse dataset of 1720 images and its performance compared with that of the MPEG-7 edge histogram descriptor

    Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching

    Full text link
    This paper presents a robotic pick-and-place system that is capable of grasping and recognizing both known and novel objects in cluttered environments. The key new feature of the system is that it handles a wide range of object categories without needing any task-specific training data for novel objects. To achieve this, it first uses a category-agnostic affordance prediction algorithm to select and execute among four different grasping primitive behaviors. It then recognizes picked objects with a cross-domain image classification framework that matches observed images to product images. Since product images are readily available for a wide range of objects (e.g., from the web), the system works out-of-the-box for novel objects without requiring any additional training data. Exhaustive experimental results demonstrate that our multi-affordance grasping achieves high success rates for a wide variety of objects in clutter, and our recognition algorithm achieves high accuracy for both known and novel grasped objects. The approach was part of the MIT-Princeton Team system that took 1st place in the stowing task at the 2017 Amazon Robotics Challenge. All code, datasets, and pre-trained models are available online at http://arc.cs.princeton.eduComment: Project webpage: http://arc.cs.princeton.edu Summary video: https://youtu.be/6fG7zwGfIk

    Interpreting Deep Visual Representations via Network Dissection

    Full text link
    The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks by providing labels for the units of their deep visual representations. The proposed method quantifies the interpretability of CNN representations by evaluating the alignment between individual hidden units and a set of visual semantic concepts. By identifying the best alignments, units are given human interpretable labels across a range of objects, parts, scenes, textures, materials, and colors. The method reveals that deep representations are more transparent and interpretable than expected: we find that representations are significantly more interpretable than they would be under a random equivalently powerful basis. We apply the method to interpret and compare the latent representations of various network architectures trained to solve different supervised and self-supervised training tasks. We then examine factors affecting the network interpretability such as the number of the training iterations, regularizations, different initializations, and the network depth and width. Finally we show that the interpreted units can be used to provide explicit explanations of a prediction given by a CNN for an image. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.Comment: *B. Zhou and D. Bau contributed equally to this work. 15 pages, 27 figure
    corecore