26,729 research outputs found

    Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments

    Get PDF
    The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium and an isotropic linear viscoelastic solid (standard solid). The thickness of the surface layer, its mechanical properties, its general shape as well as the seismic wave type involved have a great influence on the maximum amplification and the frequency for which it occurs. For real earthquakes, the numerical results are in very good agreement with experimental measurements for each motion component. Two-dimensional basin effects are found to be very strong and are well reproduced numerically

    A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems

    Get PDF
    This is the peer reviewed version of the following article: [de-Pouplana, I., and Oñate, E. (2017) A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems. Int. J. Numer. Anal. Meth. Geomech., 41: 110–134. doi: 10.1002/nag.2550], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nag.2550/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."A new mixed displacement-pressure element for solving solid–pore fluid interaction problems is presented. In the resulting coupled system of equations, the balance of momentum equation remains unaltered, while the mass balance equation for the pore fluid is stabilized with the inclusion of higher-order terms multiplied by arbitrary dimensions in space, following the finite calculus (FIC) procedure. The stabilized FIC-FEM formulation can be applied to any kind of interpolation for the displacements and the pressure, but in this work, we have used linear elements of equal order interpolation for both set of unknowns. Examples in 2D and 3D are presented to illustrate the accuracy of the stabilized formulation for solid–pore fluid interaction problems.Peer ReviewedPostprint (author's final draft

    Final Report of the DAUFIN project

    Get PDF
    DAUFIN = Data Assimulation within Unifying Framework for Improved river basiN modeling (EC 5th framework Project

    A Simple Multi-Directional Absorbing Layer Method to Simulate Elastic Wave Propagation in Unbounded Domains

    Full text link
    The numerical analysis of elastic wave propagation in unbounded media may be difficult due to spurious waves reflected at the model artificial boundaries. This point is critical for the analysis of wave propagation in heterogeneous or layered solids. Various techniques such as Absorbing Boundary Conditions, infinite elements or Absorbing Boundary Layers (e.g. Perfectly Matched Layers) lead to an important reduction of such spurious reflections. In this paper, a simple absorbing layer method is proposed: it is based on a Rayleigh/Caughey damping formulation which is often already available in existing Finite Element softwares. The principle of the Caughey Absorbing Layer Method is first presented (including a rheological interpretation). The efficiency of the method is then shown through 1D Finite Element simulations considering homogeneous and heterogeneous damping in the absorbing layer. 2D models are considered afterwards to assess the efficiency of the absorbing layer method for various wave types and incidences. A comparison with the PML method is first performed for pure P-waves and the method is shown to be reliable in a more complex 2D case involving various wave types and incidences. It may thus be used for various types of problems involving elastic waves (e.g. machine vibrations, seismic waves, etc)

    Comparison of 2D and 3D prediction models for environmental vibration induced by underground railway with two types of tracks

    Get PDF
    Two-dimensional (2D) and three-dimensional (3D) prediction models for environmental vibration induced by underground railway with direct fixation track and steel spring floating slab track are developed and verified. The responses of ground surface calculated by 2D prediction models with various equivalent forces are compared to those calculated by 3D prediction models. The numerical results show that (a) the computational time for each case calculated by 2D prediction models is more than 500 times less than that calculated by 3D prediction models, however, the accuracy of 2D prediction models is relatively lower than 3D prediction models, so 3D prediction models are required for absolute prediction due to their higher accuracy and applicability to a wider range of complex problems; and (b) a suitable equivalent force transfer method for 2D prediction models can improve the prediction accuracy of 2D prediction models, the equivalent forces in 2D prediction models are respectively recommended to use the equivalent wheel-rail force and the equivalent steel spring force averaged over a vehicle length for underground direct fixation track and steel spring floating slab trac

    Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension

    Get PDF
    This thesis is devoted to the development of new, Generalized Interpolation Material Point Method (GIMP)-based algorithms for handling surface tension and contact (wetting) in fluid-solid interaction (FSI) problems at small scales. In these problems, surface tension becomes so dominant that its influence on both fluids and solids must be considered. Since analytical solutions for most engineering problems are usually unavailable, numerical methods are needed to describe and predict complicated time-dependent states in the solid and fluid involved due to surface tension effects. Traditional computational methods for handling fluid-solid interactions may not be effective due to their weakness in solving large-deformation problems and the complicated coupling of two different types of computational frameworks: one for solid, and the other for fluid. On the contrary, GIMP, a mesh-free algorithm for solid mechanics problems, is numerically effective in handling problems involving large deformations and fracture. Here we extend the capability of GIMP to handle fluid dynamics problems with surface tension, and to develop a new contact algorithm to deal with the wetting boundary conditions that include the modeling of contact angle and slip near the triple points where the three phases -- fluid, solid, and vapor -- meet. The error of the new GIMP algorithm for FSI problems at small scales, as verified by various benchmark problems, generally falls within the 5% range. In this thesis, we have successfully extended the capability of GIMP for handling FSI problems under surface tension in a one-solver numerical framework, a unique and innovative approach.Chapter 1. Introduction -- Chapter 2. Using the generalized interpolation material point method for fluid dynamics at low reynolds numbers -- Chapter 3. On the modeling of surface tension and its applications by the generalized interpolation material point method -- Chapter 4. Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension -- Chapter 5. Conclusions

    Hybrid BEM-FEM for 2D and 3D dynamic soil-structure interaction considering arbitrary layered half-space and nonlinearities

    Get PDF
    Experiences and studies have shown that soil-structure interaction (SSI) effect has a vital role in the dynamic behaviour of a soil-structure system. Despite this, analyses involving dynamic SSI are still challenging for practicing engineers due to their complexity and accessibility. In this thesis, the hybrid BEM-FEM implementation is aimed at practicality by combining commercial software and an in-house code. The pre-processing task can be performed under one graphical environment, and it is enhanced with the capability to compute different types of dynamic sources and other improvements to increase its efficiency, accuracy, and modeling flexibility. Further, the underlying soil is commonly a layered profile with arbitrary geometries. Most existing solutions solve the problem through simplification of the geometry and pattern. One of the main contributions in this thesis is the development of layer-wise condensation method to solve these cases using hybrid BEM-FEM. The method significantly reduces the computational memory requirement. Another challenge in the dynamic SSI addressed in this work is the consideration of secondary nonlinearities. Existing solutions using the time domain BEM and iterative hybrid method are computationally costly, and implementation of such a hybrid method on commercial software is tedious. The solution to address this case using a sequential frequency-time domain procedure is presented. The relatively simple approach makes it possible to consider the nonlinearities in the simulation without using the time domain BEM and without requiring additional iterations. Case studies demonstrating the application of the enhanced hybrid method are presented including cases of bridges, containment structures, and a 3D multi-storey structure under point source and double-couple sources. These case studies illustrate the role of following critical factors such as the site effect, inhomogeneity, and nonlinearities

    A Simple Numerical Absorbing Layer Method in Elastodynamics

    Get PDF
    The numerical analysis of elastic wave propagation in unbounded media may be difficult to handle due to spurious waves reflected at the model artificial boundaries. Several sophisticated techniques such as nonreflecting boundary conditions, infinite elements or absorbing layers (e.g. Perfectly Matched Layers) lead to an important reduction of such spurious reflections. In this Note, a simple and efficient absorbing layer method is proposed in the framework of the Finite Element Method. This method considers Rayleigh/Caughey damping in the absorbing layer and its principle is presented first. The efficiency of the method is then shown through 1D Finite Element simulations considering homogeneous and heterogeneous damping in the absorbing layer. 2D models are considered afterwards to assess the efficiency of the absorbing layer method for various wave types (surface waves, body waves) and incidences (normal to grazing). The method is shown to be efficient for different types of elastic waves and may thus be used for various elastodynamic problems in unbounded domains
    corecore