2,488 research outputs found

    Predicting Fraud in Mobile Phone Usage Using Artificial Neural Networks

    Get PDF
    Mobile phone usage involves the use of wireless communication devices that can be carried anywhere, as they require no physical connection to any external wires to work. However, mobile technology is not without its own problems. Fraud is prevalent in both fixed and mobile networks of all technologies. Frauds have plagued the telecommunication industries, financial institutions and other organizations for a long time. The aim of this research work and research publication is to apply 3 different neural network models (Fuzzy, Radial Basis and the Feedforward) to the prediction of fraud in real-life data of phone usage and also analyze and evaluate their performances with respect to their predicting capability. From the analysis and model predictability experiment carried out in this scientific research work, it was discovered that the fuzzy network model had the minimum error generated in its fraud predicting capability. Thus, its performance in terms of the error generated in this fraud prediction experiment showed that its NMSE (Normalized mean squared error) for the fraud predicted was 1.98264609. The mean absolute error (M AE = 15.00987244) for its fraud prediction was also the least; this showed that the fuzzy model fraud predictability was much better than the other two models

    Accurate traffic flow prediction in heterogeneous vehicular networks in an intelligent transport system using a supervised non-parametric classifier

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Heterogeneous vehicular networks (HETVNETs) evolve from vehicular ad hoc networks (VANETs), which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs). The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore, Quality of Service (QoS) improvement of HETVNETs is one of the topics attracting the attention of researchers and the manufacturing community. Several methodologies and frameworks have been devised by researchers to address QoS-prediction service issues. In this paper, to improve QoS, we evaluate various traffic characteristics of HETVNETs and propose a new supervised learning model to capture knowledge on all possible traffic patterns. This model is a refinement of support vector machine (SVM) kernels with a radial basis function (RBF). The proposed model produces better results than SVMs, and outperforms other prediction methods used in a traffic context, as it has lower computational complexity and higher prediction accuracy

    A hybrid neuro--wavelet predictor for QoS control and stability

    Full text link
    For distributed systems to properly react to peaks of requests, their adaptation activities would benefit from the estimation of the amount of requests. This paper proposes a solution to produce a short-term forecast based on data characterising user behaviour of online services. We use \emph{wavelet analysis}, providing compression and denoising on the observed time series of the amount of past user requests; and a \emph{recurrent neural network} trained with observed data and designed so as to provide well-timed estimations of future requests. The said ensemble has the ability to predict the amount of future user requests with a root mean squared error below 0.06\%. Thanks to prediction, advance resource provision can be performed for the duration of a request peak and for just the right amount of resources, hence avoiding over-provisioning and associated costs. Moreover, reliable provision lets users enjoy a level of availability of services unaffected by load variations

    Using Machine Learning for Handover Optimization in Vehicular Fog Computing

    Full text link
    Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set
    • …
    corecore