9 research outputs found

    TOWARDS STEADY-STATE VISUALLY EVOKED POTENTIALS BRAIN-COMPUTER INTERFACES FOR VIRTUAL REALITY ENVIRONMENTS EXPLICIT AND IMPLICIT INTERACTION

    Get PDF
    In the last two decades, Brain-Computer Interfaces (BCIs) have been investigated mainly for the purpose of implementing assistive technologies able to provide new channels for communication and control for people with severe disabilities. Nevertheless, more recently, thanks to technical and scientific advances in the different research fields involved, BCIs are gaining greater attention also for their adoption by healthy users, as new interaction devices. This thesis is dedicated to to the latter goal and in particular will deal with BCIs based on the Steady State Visual Evoked Potential (SSVEP), which in previous works demonstrated to be one of the most flexible and reliable approaches. SSVEP based BCIs could find applications in different contexts, but one which is particularly interesting for healthy users, is their adoption as new interaction devices for Virtual Reality (VR) environments and Computer Games. Although being investigated since several years, BCIs still poses several limitations in terms of speed, reliability and usability with respect to ordinary interaction devices. Despite of this, they may provide additional, more direct and intuitive, explicit interaction modalities, as well as implicit interaction modalities otherwise impossible with ordinary devices. This thesis, after a comprehensive review of the different research fields being the basis of a BCI exploiting the SSVEP modality, present a state-of-the-art open source implementation using a mix of pre-existing and custom software tools. The proposed implementation, mainly aimed to the interaction with VR environments and Computer Games, has then been used to perform several experiments which are hereby described as well. Initially performed experiments aim to stress the validity of the provided implementation, as well as to show its usability with a commodity bio-signal acquisition device, orders of magnitude less expensive than commonly used ones, representing a step forward in the direction of practical BCIs for end users applications. The proposed implementation, thanks to its flexibility, is used also to perform novel experiments aimed to investigate the exploitation of stereoscopic displays to overcome a known limitation of ordinary displays in the context of SSVEP based BCIs. Eventually, novel experiments are presented investigating the use of the SSVEP modality to provide also implicit interaction. In this context, a first proof of concept Passive BCI based on the SSVEP response is presented and demonstrated to provide information exploitable for prospective applications

    Exploiting code-modulating, Visually-Evoked Potentials for fast and flexible control via Brain-Computer Interfaces

    Get PDF
    Riechmann H. Exploiting code-modulating, Visually-Evoked Potentials for fast and flexible control via Brain-Computer Interfaces. Bielefeld: Universität Bielefeld; 2014

    Exploiting code-modulating, Visually-Evoked Potentials for fast and flexible control via Brain-Computer Interfaces

    Get PDF
    Riechmann H. Exploiting code-modulating, Visually-Evoked Potentials for fast and flexible control via Brain-Computer Interfaces. Bielefeld: Universität Bielefeld; 2014

    The influence of graphical user interface on motion onset brain-computer interface performance and the effect of data augmentation on motor imagery brain-computer interface

    Get PDF
    Motor Imagery Brain Computer Interface (MI BCI) is one of the most frequently used BCI modalities, due to the versatility of its applications. However, it still has unresolved issues like time-consuming calibration, low information transfer rate, and inconsistent performance across individuals. Combining MI BCI with Motion Onset Visual Evoked Potential (mVEP) BCI in a hybrid structure may solve some of these problems. Combining MI BCI with more robust mVEP BCI, would increase the degrees of freedom thereby increasing the information transfer rate, and would also indirectly improve intrasubject consistency in performance by replacing some MI-based tasks with mVEP. Unfortunately, due to Covid -19 pandemic experimental research on hybrid BCI was not possible, therefore this thesis focuses on two BCI separately. Chapter 1 provides an overview of different BCIs modalities and the underlying neurophysiological principles, followed by the objectives of the thesis. The research contributions are also highlighted. Finally, the thesis outlines are presented at the end of this chapter. Chapter 2 presents a comprehensive state of the art to the thesis, drawing on a wide range of literature in relevant fields. Specifically, it delves into MI BCI, mVEP BCI, Deep Learning, Transfer Learning (TL), Data Augmentation (DA) and Generative Adversarial Networks (GANs). Chapter 3 investigates the effect of graphical elements, in online and offline experiments. In the offline experiment, graphical elements such as the color, size, position, and layout were explored. Replacing a default red moving bar with a green and blue bar, changing the background color from white to gray, and using smaller visual angles did not lead to statistically significant improvement in accuracy. However, the effect size of η2 (0.085) indicated a moderate effect for these changes of graphical factors. Similarly, no statistically significant difference was found for the two different layouts in online experiments. Overall, the mVEP BCI has achieved a classification accuracy of approximately 80%, and it is relatively impervious to changes in graphical interface parameters. This suggests that mVEP is a promising candidate for a hybrid BCI system combined with MI, that requires dynamic, versatile graphical design features. In Chapter 4, various DA methods are explored, including Segmentation and Recombination in Time Domain, Segmentation and Recombination in Time-Frequency Domain, and Spatial Analogy. These methods are evaluated based on three feature extraction approaches: Common Spatial Patterns, Time Domain Parameters (TDP), and Band Power. The evaluation was conducted using a validated BCI set, namely the BCI Competition IV dataset 2a, as well as a dataset obtained from our research group. The methods are effective when a small dataset of single subject are available. All three DA methods significantly affect the performance of the TDP feature extraction method. Chapter 5 explored the use of GANs for DA in combination with TL and cropped training strategies using ShallowFBCSP classifier. It also used the same validated dataset (BCI competition IV dataset 2a) as in Chapter 4. In contrast to DA method explored in Chapter 4, this DA is suitable for larger datasets and for generalizing training based on other people’s data. Applying GAN-based DA to the dataset resulted on average in a 2% improvement in average accuracy (from 68.2% to 70.7%). This study provides a novel method to enable MI GAN training with only 40 trials per participant with the rest 8 people’s data for TL, addressing the data insufficiency issue for GANs. The evaluation of generated artificial trials revealed the importance of inter-class differences in MI patterns, which can be easily identified by GANs. Overall the thesis addressed the main practical issues of both mVEP and MI BCI paving the way for their successful combination in future experiments

    Die Wirksamkeit von Feedback und Trainingseffekten während der Alphaband Modulation über dem menschlichen sensomotorischen Cortex

    Get PDF
    Neural oscillations can be measured by electroencephalography (EEG) and these oscillations can be characterized by their frequency, amplitude and phase. The mechanistic properties of neural oscillations and their synchronization are able to explain various aspects of many cognitive functions such as motor control, memory, attention, information transfer across brain regions, segmentation of the sensory input and perception (Arnal and Giraud, 2012). The alpha band frequency is the dominant oscillation in the human brain. This oscillatory activity is found in the scalp EEG at frequencies around 8-13 Hz in all healthy adults (Makeig et al., 2002) and considerable interest has been generated in exploring EEG alpha oscillations with regard to their role in cognitive (Klimesch et al., 1993; Hanselmayr et al., 2005), sensorimotor (Birbaumer, 2006; Sauseng et al., 2009) and physiological (Lehmann, 1971; Niedermeyer, 1997; Kiyatkin, 2010) aspects of human life. The ability to voluntarily regulate the alpha amplitude can be learned with neurofeedback training and offers the possibility to control a brain-computer interface (BCI), a muscle independent interaction channel. BCI research is predominantly focused on the signal processing, the classification and the algorithms necessary to translate brain signals into control commands than on the person interacting with the technical system. The end-user must be properly trained to be able to successfully use the BCI and factors such as task instructions, training, and especially feedback can therefore play an important role in learning to control a BCI (Neumann and Kübler, 2003; Pfurtscheller et al., 2006, 2007; Allison and Neuper, 2010; Friedrich et al., 2012; Kaufmann et al., 2013; Lotte et al., 2013). The main purpose of this thesis was to investigate how end-users can efficiently be trained to perform alpha band modulation recorded over their sensorimotor cortex. The herein presented work comprises three studies with healthy participants and participants with schizophrenia focusing on the effects of feedback and training time on cortical activation patterns and performance. In the first study, the application of a realistic visual feedback to support end-users in developing a concrete feeling of kinesthetic motor imagery was tested in 2D and 3D visualization modality during a single training session. Participants were able to elicit the typical event-related desynchronisation responses over sensorimotor cortex in both conditions but the most significant decrease in the alpha band power was obtained following the three-dimensional realistic visualization. The second study strengthen the hypothesis that an enriched visual feedback with information about the quality of the input signal supports an easier approach for motor imagery based BCI control and can help to enhance performance. Significantly better performance levels were measurable during five online training sessions in the groups with enriched feedback as compared to a conventional simple visual feedback group, without significant differences in performance between the unimodal (visual) and multimodal (auditory–visual) feedback modality. Furthermore, the last study, in which people with schizophrenia participated in multiple sessions with simple feedback, demonstrated that these patients can learn to voluntarily regulate their alpha band. Compared to the healthy group they required longer training times and could not achieve performance levels as high as the control group. Nonetheless, alpha neurofeedback training lead to a constant increase of the alpha resting power across all 20 training session. To date only little is known about the effects of feedback and training time on BCI performance and cortical activation patterns. The presented work contributes to the evidence that healthy individuals can benefit from enriched feedback: A realistic presentation can support participants in getting a concrete feeling of motor imagery and enriched feedback, which instructs participants about the quality of their input signal can give support while learning to control the BCI. This thesis demonstrates that people with schizophrenia can learn to gain control of their alpha oscillations recorded over the sensorimotor cortex when participating in sufficient training sessions. In conclusion, this thesis improved current motor imagery BCI feedback protocols and enhanced our understanding of the interplay between feedback and BCI performance.Die Wirksamkeit von Feedback und Trainingseffekten während der Alphaband Modulation über dem menschlichen sensomotorischen Corte
    corecore