6,685 research outputs found

    Heuristic Evaluation of a Medical Device Prototype

    Get PDF
    Usability principles are often secondary to clinical effectiveness when assessing medical devices. However, the majority of medical device incidents are linked to user error. Greater attention to usability evaluation during the development of a medical device can prevent patient-endangering errors. In this study, the usability of a medical device prototype is assessed through heuristic evaluation. The aim was to carry out an evaluation and to assess heuristic evaluation as a method to improve medical device usability. The evaluated prototype is a mobile eye blink pacemaker aimed at patients with unilateral facial palsy. Facial palsy impairs the muscles responsible for producing the eye blink. Lack of blinking can result in complications such as dry eye disease and corneal ulceration. The purpose of the studied prototype is to evoke the eye blink with electrical stimulation. The device could be a simple and cost-effective alternative for more invasive methods. Heuristics targeted particularly for medical devices are yet to be developed. Heuristic applied in this study are a combination of heuristics formerly used in other studies analyzing medical devices. The majority of usability problems detected concerned the user’s control and physical effort. The most severe problems were related to error situations. Most of the heuristic violations were rated as minor problems; no catastrophic problems were found. The most problematic part of the prototype was the adjustment of the stimulation level. The heuristic evaluation is a quick and resource-efficient method to identify usability problems and their severities in medical devices. However, more research is needed to create a standard set of heuristics aimed especially at medical devices

    Training Competences in Industrial Risk Prevention with LegoÂź Serious PlayÂź: A Case Study

    Get PDF
    This paper proposes the use of the Lego¼ Serious Play¼ (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego¼ Serious Play¼. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Training Competences in Industrial Risk Prevention with Lego (R) Serious Play (R): A Case Study

    Get PDF
    This paper proposes the use of the Lego (R) Serious Play (R) (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017-2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of "gamification" dynamics with Lego (R) Serious Play (R). In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams

    We Need Numbers! - Heuristic Evaluation during Demonstrations (HED) for Measuring Usability in IT System Procurement

    Get PDF
    We introduce a new usability inspection method called HED (heuristic evaluation during demonstrations) for measuring and comparing usability of competing complex IT systems in public procurement. The method presented enhances traditional heuristic evaluation to include the use context, comprehensive view of the system, and reveals missing functionality by using user scenarios and demonstrations. HED also quantifies the results in a comparable way. We present findings from a real-life validation of the method in a large-scale procurement project of a healthcare and social welfare information system. We analyze and compare the performance of HED to other usability evaluation methods used in procurement. Based on the analysis HED can be used to evaluate the level of usability of an IT system during procurement correctly, comprehensively and efficiently.Peer reviewe

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise
    • 

    corecore