4,405 research outputs found

    Information Technology and Computing Topics and Their Relevance to Medical Undergraduate and Graduate Program Curricula at RIT

    Get PDF
    Two healthcare domain related programs in which this author has curricular relationships are the undergraduate Diagnostic Ultrasound (DU), and the graduate Master of Science in Health Informatics (MSHI). He teaches one course in the former and is the program coordinator for the latter. The undergraduate course is titled, “Computers in Medicine”, and is a rough 50% combination of a first-semester computing hardware course taught to our IT undergrads and another 50% of material from a textbook covering all the ways in which computing has benefitted various healthcare domains like, surgery, pharmacy, imaging, dentistry, psychiatry, remote medicine and the like. The MSHI program is a 30 semester credit hour program offered in an online format with a capstone experience (no thesis required) that was designed for professionals expecting to retool themselves for continued employment in a healthcare setting. This paper will discuss the details of the DU course and the MSHI program, the kind of computing content covered in each, and the rationale for and program design input of each. In conclusion, the reader will be left with an understanding of the what, when, how and why computing topics are necessarily required by these curricula, our justification for such, and how we might use that information in the development of future healthcare-related computing courses and potential programs. Course definition and program outline documents will be attached as appendices to the paper

    Utilizing RxNorm to Support Practical Computing Applications: Capturing Medication History in Live Electronic Health Records

    Full text link
    RxNorm was utilized as the basis for direct-capture of medication history data in a live EHR system deployed in a large, multi-state outpatient behavioral healthcare provider in the United States serving over 75,000 distinct patients each year across 130 clinical locations. This tool incorporated auto-complete search functionality for medications and proper dosage identification assistance. The overarching goal was to understand if and how standardized terminologies like RxNorm can be used to support practical computing applications in live EHR systems. We describe the stages of implementation, approaches used to adapt RxNorm's data structure for the intended EHR application, and the challenges faced. We evaluate the implementation using a four-factor framework addressing flexibility, speed, data integrity, and medication coverage. RxNorm proved to be functional for the intended application, given appropriate adaptations to address high-speed input/output (I/O) requirements of a live EHR and the flexibility required for data entry in multiple potential clinical scenarios. Future research around search optimization for medication entry, user profiling, and linking RxNorm to drug classification schemes holds great potential for improving the user experience and utility of medication data in EHRs.Comment: Appendix (including SQL/DDL Code) available by author request. Keywords: RxNorm; Electronic Health Record; Medication History; Interoperability; Unified Medical Language System; Search Optimizatio

    Methods to Facilitate the Capture, Use, and Reuse of Structured and Unstructured Clinical Data.

    Full text link
    Electronic health records (EHRs) have great potential to improve quality of care and to support clinical and translational research. While EHRs are being increasingly implemented in U.S. hospitals and clinics, their anticipated benefits have been largely unachieved or underachieved. Among many factors, tedious documentation requirements and the lack of effective information retrieval tools to access and reuse data are two key reasons accounting for this deficiency. In this dissertation, I describe my research on developing novel methods to facilitate the capture, use, and reuse of both structured and unstructured clinical data. Specifically, I develop a framework to investigate potential issues in this research topic, with a focus on three significant challenges. The first challenge is structured data entry (SDE), which can be facilitated by four effective strategies based on my systematic review. I further propose a multi-strategy model to guide the development of future SDE applications. In the follow-up study, I focus on workflow integration and evaluate the feasibility of using EHR audit trail logs for clinical workflow analysis. The second challenge is the use of clinical narratives, which can be supported by my innovative information retrieval (IR) technique called “semantically-based query recommendation (SBQR)”. My user experiment shows that SBQR can help improve the perceived performance of a medical IR system, and may work better on search tasks with average difficulty. The third challenge involves reusing EHR data as a reference standard to benchmark the quality of other health-related information. My study assesses the readability of trial descriptions on ClinicalTrials.gov and found that trial descriptions are very hard to read, even harder than clinical notes. My dissertation has several contributions. First, it conducts pioneer studies with innovative methods to improve the capture, use, and reuse of clinical data. Second, my dissertation provides successful examples for investigators who would like to conduct interdisciplinary research in the field of health informatics. Third, the framework of my research can be a great tool to generate future research agenda in clinical documentation and EHRs. I will continue exploring innovative and effective methods to maximize the value of EHRs.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135845/1/tzuyu_1.pd

    An analysis of electronic health record-related patient safety incidents

    Get PDF
    The aim of this study was to analyse electronic health record-related patient safety incidents in the patient safety incident reporting database in fully digital hospitals in Finland. We compare Finnish data to similar international data and discuss their content with regard to the literature. We analysed the types of electronic health record-related patient safety incidents that occurred at 23 hospitals during a 2-year period. A procedure of taxonomy mapping served to allow comparisons. This study represents a rare examination of patient safety risks in a fully digital environment. The proportion of electronic health record-related incidents was markedly higher in our study than in previous studies with similar data. Human-computer interaction problems were the most frequently reported. The results show the possibility of error arising from the complex interaction between clinicians and computers.Peer reviewe
    corecore