309 research outputs found

    The Next-Generation Surgical Robots

    Get PDF
    The chronicle of surgical robots is short but remarkable. Within 20 years since the regulatory approval of the first surgical robot, more than 3,000 units were installed worldwide, and more than half a million robotic surgical procedures were carried out in the past year alone. The exceptionally high speeds of market penetration and expansion to new surgical areas had raised technical, clinical, and ethical concerns. However, from a technological perspective, surgical robots today are far from perfect, with a list of improvements expected for the next-generation systems. On the other hand, robotic technologies are flourishing at ever-faster paces. Without the inherent conservation and safety requirements in medicine, general robotic research could be substantially more agile and explorative. As a result, various technical innovations in robotics developed in recent years could potentially be grafted into surgical applications and ignite the next major advancement in robotic surgery. In this article, the current generation of surgical robots is reviewed from a technological point of view, including three of possibly the most debated technical topics in surgical robotics: vision, haptics, and accessibility. Further to that, several emerging robotic technologies are highlighted for their potential applications in next-generation robotic surgery

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    A Practicality Analysis Pertaining to Minimally Invasive Robot-Assisted Urologic Surgery

    Get PDF
    Minimally invasive robot-assisted surgery is a technological development that has changed the field of medicine in the past decade. The introduction of the da Vinci® by Intuitive Surgical Inc. has opened up many interesting options in several different fields. Specifically, the field of urology has seen increased utilization of the robotic technique due to the precision allowed by the technology. Although many perioperative and postoperative benefits have been documented within the literature pertaining to robotic surgery, some surgeons contend that the extra cost associated with the procedures is not practical. To this point the extra cost has not been prohibitive, as the number of robot-assisted procedures has continued to increase in the years since FDA approval. In this study, we employed an analysis of three of the more commonly performed da Vinci® robotic urology procedures (prostatectomy, pyeloplasty, and nephrectomy) to assess the practicality of the robotic techniques as compared to the more established methods of laparoscopic or open urologic surgery. The study results displayed that robotic integration is more practical for all three of the surgeries reviewed. Factors that influenced the results were the tendencies of robot-assisted procedures to have similar outcomes to laparoscopic or open procedures while allowing for less estimated blood loss and a shorter length of hospital stay. This paper discusses the results from the practicality evaluation as well as how these findings should be interpreted

    Spider surgical system versus multiport laparoscopic surgery. Performance comparison on a surgical simulator

    Get PDF
    BACKGROUND: The rising interest towards minimally invasive surgery has led to the introduction of laparo-endoscopic single site (LESS) surgery as the natural evolution of conventional multiport laparoscopy. However, this new surgical approach is hampered with peculiar technical difficulties. The SPIDER surgical system has been developed in the attempt to overcome some of these challenges. Our study aimed to compare standard laparoscopy and SPIDER technical performance on a surgical simulator, using standardized tasks from the Fundamentals of Laparoscopic Surgery (FLS). METHODS: Twenty participants were divided into two groups based on their surgical laparoscopic experience: 10 PGY1 residents were included in the inexperienced group and 10 laparoscopists in the experienced group. Participants performed the FLS pegboard transfers task and pattern cutting task on a laparoscopic box trainer. Objective task scores and subjective questionnaire rating scales were used to compare conventional laparoscopy and SPIDER surgical system. RESULTS: Both groups performed significantly better in the FLS scores on the standard laparoscopic simulator compared to the SPIDER. Inexperienced group: Task 1 scores (median 252.5 vs. 228.5; p = 0.007); Task 2 scores (median 270.5 vs. 219.0; p = 0.005). Experienced group: Task 1 scores (median 411.5 vs. 309.5; p = 0.005); Task 2 scores (median 418.0 vs. 331.5; p = 0.007). Same aspects were highlighted for the subjective evaluations, except for the inexperienced surgeons who found both devices equivalent in terms of ease of use only in the peg transfer task. CONCLUSIONS: Even though the SPIDER is an innovative and promising device, our study proved that it is more challenging than conventional laparoscopy in a population with different degrees of surgical experience. We presume that a possible way to overcome such challenges could be the development of tailored training programs through simulation methods. This may represent an effective way to deliver training, achieve mastery and skills and prepare surgeons for their future clinical experience

    Kidney targeting and puncturing during percutaneous nephrolithotomy: recent advances and future perspectives

    Get PDF
    Background and Purpose: Precise needle puncture of the kidney is a challenging and essential step for successful percutaneous nephrolithotomy (PCNL). Many devices and surgical techniques have been developed to easily achieve suitable renal access. This article presents a critical review to address the methodologies and techniques for conducting kidney targeting and the puncture step during PCNL. Based on this study, research paths are also provided for PCNL procedure improvement. METHODS: Most relevant works concerning PCNL puncture were identified by a search of Medline/PubMed, ISI Web of Science, and Scopus databases from 2007 to December 2012. Two authors independently reviewed the studies. RESULTS: A total of 911 abstracts and 346 full-text articles were assessed and discussed; 52 were included in this review as a summary of the main contributions to kidney targeting and puncturing. CONCLUSIONS: Multiple paths and technologic advances have been proposed in the field of urology and minimally invasive surgery to improve PCNL puncture. The most relevant contributions, however, have been provided by the application of medical imaging guidance, new surgical tools, motion tracking systems, robotics, and image processing and computer graphics. Despite the multiple research paths for PCNL puncture guidance, no widely acceptable solution has yet been reached, and it remains an active and challenging research field. Future developments should focus on real-time methods, robust and accurate algorithms, and radiation free imaging techniques.The authors acknowledge Foundation for Science and Technology (FCT) for the fellowships references: SFRH/BPD/46851/2008 and SFRH/BD/74276/2010

    Recent finding and new technologies in nephrolithiasis: a review of the recent literature

    Get PDF
    This review summarizes recent literature on advances regarding renal and ureteral calculi, with particular focus in areas of recent advances in the overall field of urolithiasis. Clinical management in everyday practice requires a complete understanding of the issues regarding metabolic evaluation and subgrouping of stone-forming patients, diagnostic procedures, effective treatment regime in acute stone colic, medical expulsive therapy, and active stone removal. In this review we focus on new perspectives in managing nephrolitihiasis and discuss recentadvances, including medical expulsive therapy, new technologies, and refinements of classical therapy such as shock wave lithotripsy, give a fundamental modification of nephrolithiasis management. Overall, this field appears to be the most promising, capable of new developments in ureterorenoscopy and percutaneous approaches. Further improvements are expected from robotic-assisted procedures, such as flexible robotics in ureterorenoscopy

    Acceptance, Prevalence and Indications for Robot-Assisted Laparoscopy - Results of a Survey Among Urologists in Germany, Austria and Switzerland

    Get PDF
    Background: Robotic-assisted laparoscopy (RAL) is being widely accepted in the field of urology as a replacement for conventional laparoscopy (CL). Nevertheless, the process of its integration in clinical routines has been rather spontaneous. Objective: To determine the prevalence of robotic systems (RS) in urological clinics in Germany, Austria and Switzerland, the acceptance of RAL among urologists as a replacement for CL and its current use for 25 different urological indications. Materials and Methods: To elucidate the practice patterns of RAL, a survey at hospitals in Germany, Austria and Switzerland was conducted. All surgically active urology departments in Germany (303), Austria (37) and Switzerland (84) received a questionnaire with questions related to the one-year period prior to the survey. Results: The response rate was 63%. Among the participants, 43% were universities, 45% were tertiary care centres, and 8% were secondary care hospitals. A total of 60 RS (Germany 35, Austria 8, Switzerland 17) were available, and the majority (68%) were operated under public ownership. The perception of RAL and the anticipated superiority of RAL significantly differed between robotic and non-robotic surgeons. For only two urologic indications were more than 50% of the procedures performed using RAL: pyeloplasty (58%) and transperitoneal radical prostatectomy (75%). On average, 35% of robotic surgeons and only 14% of non-robotic surgeons anticipated RAL superiority in some of the 25 indications. Conclusions: This survey provides a detailed insight into RAL implementation in Germany, Austria and Switzerland. RAL is currently limited to a few urological indications with a small number of high-volume robotic centres. These results might suggest that a saturation of clinics using RS has been achieved but that the existing robotic capacities are being utilized ineffectively. The possible reasons for this finding are discussed, and certain strategies to solve these problems are offered

    Perceptions of Surgical Robotics - Analysis and Study Design

    Get PDF
    This IQP presents a data analysis of the results of a study to evaluate the perception of surgical robotics, with the aim of helping those in the medical field properly communicate and interact with prospective patients. Study populations include post-operative patients, practitioners, and the general population. The data identifies demographic trends which may help to tailor outreach. It is found that recovery time and success rate are among the most important factors which impact a patient\u27s decision to undergo robotic surgery. There is inconsistency in the understanding of the advantages and nature of robotic surgery. In addition, this IQP presents revised forms of the three surveys, as well as a journal paper drafted with the results

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system
    corecore