200 research outputs found

    Multi-Modal Learning For Adaptive Scene Understanding

    Get PDF
    Modern robotics systems typically possess sensors of different modalities. Segmenting scenes observed by the robot into a discrete set of classes is a central requirement for autonomy. Equally, when a robot navigates through an unknown environment, it is often necessary to adjust the parameters of the scene segmentation model to maintain the same level of accuracy in changing situations. This thesis explores efficient means of adaptive semantic scene segmentation in an online setting with the use of multiple sensor modalities. First, we devise a novel conditional random field(CRF) inference method for scene segmentation that incorporates global constraints, enforcing particular sets of nodes to be assigned the same class label. To do this efficiently, the CRF is formulated as a relaxed quadratic program whose maximum a posteriori(MAP) solution is found using a gradient-based optimization approach. These global constraints are useful, since they can encode "a priori" information about the final labeling. This new formulation also reduces the dimensionality of the original image-labeling problem. The proposed model is employed in an urban street scene understanding task. Camera data is used for the CRF based semantic segmentation while global constraints are derived from 3D laser point clouds. Second, an approach to learn CRF parameters without the need for manually labeled training data is proposed. The model parameters are estimated by optimizing a novel loss function using self supervised reference labels, obtained based on the information from camera and laser with minimum amount of human supervision. Third, an approach that can conduct the parameter optimization while increasing the model robustness to non-stationary data distributions in the long trajectories is proposed. We adopted stochastic gradient descent to achieve this goal by using a learning rate that can appropriately grow or diminish to gain adaptability to changes in the data distribution

    The Cityscapes Dataset for Semantic Urban Scene Understanding

    Full text link
    Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To address this, we introduce Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high quality pixel-level annotations; 20000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data. Crucially, our effort exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity. Our accompanying empirical study provides an in-depth analysis of the dataset characteristics, as well as a performance evaluation of several state-of-the-art approaches based on our benchmark.Comment: Includes supplemental materia

    Unsupervised Monocular Depth Estimation with Left-Right Consistency

    Get PDF
    Learning based methods have shown very promising results for the task of depth estimation in single images. However, most existing approaches treat depth prediction as a supervised regression problem and as a result, require vast quantities of corresponding ground truth depth data for training. Just recording quality depth data in a range of environments is a challenging problem. In this paper, we innovate beyond existing approaches, replacing the use of explicit depth data during training with easier-to-obtain binocular stereo footage. We propose a novel training objective that enables our convolutional neural network to learn to perform single image depth estimation, despite the absence of ground truth depth data. Exploiting epipolar geometry constraints, we generate disparity images by training our network with an image reconstruction loss. We show that solving for image reconstruction alone results in poor quality depth images. To overcome this problem, we propose a novel training loss that enforces consistency between the disparities produced relative to both the left and right images, leading to improved performance and robustness compared to existing approaches. Our method produces state of the art results for monocular depth estimation on the KITTI driving dataset, even outperforming supervised methods that have been trained with ground truth depth.Comment: CVPR 2017 ora

    Semantic Labeling of Mobile LiDAR Point Clouds via Active Learning and Higher Order MRF

    Get PDF
    【Abstract】Using mobile Light Detection and Ranging point clouds to accomplish road scene labeling tasks shows promise for a variety of applications. Most existing methods for semantic labeling of point clouds require a huge number of fully supervised point cloud scenes, where each point needs to be manually annotated with a specific category. Manually annotating each point in point cloud scenes is labor intensive and hinders practical usage of those methods. To alleviate such a huge burden of manual annotation, in this paper, we introduce an active learning method that avoids annotating the whole point cloud scenes by iteratively annotating a small portion of unlabeled supervoxels and creating a minimal manually annotated training set. In order to avoid the biased sampling existing in traditional active learning methods, a neighbor-consistency prior is exploited to select the potentially misclassified samples into the training set to improve the accuracy of the statistical model. Furthermore, lots of methods only consider short-range contextual information to conduct semantic labeling tasks, but ignore the long-range contexts among local variables. In this paper, we use a higher order Markov random field model to take into account more contexts for refining the labeling results, despite of lacking fully supervised scenes. Evaluations on three data sets show that our proposed framework achieves a high accuracy in labeling point clouds although only a small portion of labels is provided. Moreover, comparative experiments demonstrate that our proposed framework is superior to traditional sampling methods and exhibits comparable performance to those fully supervised models.10.13039/501100001809-National Natural Science Foundation of China; Collaborative Innovation Center of Haixi Government Affairs Big Data Sharin
    • 

    corecore