23,656 research outputs found

    STAR: A Concise Deep Learning Framework for Citywide Human Mobility Prediction

    Full text link
    Human mobility forecasting in a city is of utmost importance to transportation and public safety, but with the process of urbanization and the generation of big data, intensive computing and determination of mobility pattern have become challenging. This study focuses on how to improve the accuracy and efficiency of predicting citywide human mobility via a simpler solution. A spatio-temporal mobility event prediction framework based on a single fully-convolutional residual network (STAR) is proposed. STAR is a highly simple, general and effective method for learning a single tensor representing the mobility event. Residual learning is utilized for training the deep network to derive the detailed result for scenarios of citywide prediction. Extensive benchmark evaluation results on real-world data demonstrate that STAR outperforms state-of-the-art approaches in single- and multi-step prediction while utilizing fewer parameters and achieving higher efficiency.Comment: Accepted by MDM 201

    Predicting topology propagation messages in mobile ad hoc networks: The value of history

    Get PDF
    This research was funded by the Spanish Government under contracts TIN2016-77836-C2-1-R,TIN2016-77836-C2-2-R, and DPI2016-77415-R, and by the Generalitat de Catalunya as Consolidated ResearchGroups 2017-SGR-688 and 2017-SGR-990.The mobile ad hoc communication in highly dynamic scenarios, like urban evacuations or search-and-rescue processes, plays a key role in coordinating the activities performed by the participants. Particularly, counting on message routing enhances the communication capability among these actors. Given the high dynamism of these networks and their low bandwidth, having mechanisms to predict the network topology offers several potential advantages; e.g., to reduce the number of topology propagation messages delivered through the network, the consumption of resources in the nodes and the amount of redundant retransmissions. Most strategies reported in the literature to perform these predictions are limited to support high mobility, consume a large amount of resources or require training. In order to contribute towards addressing that challenge, this paper presents a history-based predictor (HBP), which is a prediction strategy based on the assumption that some topological changes in these networks have happened before in the past, therefore, the predictor can take advantage of these patterns following a simple and low-cost approach. The article extends a previous proposal of the authors and evaluates its impact in highly mobile scenarios through the implementation of a real predictor for the optimized link state routing (OLSR) protocol. The use of this predictor, named OLSR-HBP, shows a reduction of 40–55% of topology propagation messages compared to the regular OLSR protocol. Moreover, the use of this predictor has a low cost in terms of CPU and memory consumption, and it can also be used with other routing protocols.Peer ReviewedPostprint (published version

    Efficient Journey Planning and Congestion Prediction Through Deep Learning

    Get PDF
    The advancements of technology continuously rising over the years has seen many applications that are useful in providing users with sufficient information to make better journey plans on their own. However, commuters still find themselves going through congested routes every day to get to their destinations. This paper attempts to delineate the possibilities of improving urban mobility through big data processing and deep-learning models. Essentially, through a predictive model to predict congestion and its duration, this paper aims to develop and validate a functional journey planning mobile application that can predict traffic conditions, allowing road users to make better informed decisions to their travel plans. This paper proposes a Multi-Layered Perceptron (MLP) deep learning model for congestion prediction and supplements a Linear Regression (LR) model to predict its duration. The proposed MLP-LR model performed reasonably well with an accuracy of 63% in predicting an occurrence of congestion. Some critical discussions on further research opportunities stemming from this study is also presented

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System
    • …
    corecore