2,647 research outputs found

    Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

    Full text link
    Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependences within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. Experimental results, validated on real-world data provided by DiDi Chuxing, show that the FCL-Net achieves better predictive performance than traditional approaches including both classical time-series prediction models and neural network based algorithms (e.g., artificial neural network and LSTM). This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.Comment: 39 pages, 10 figure

    Hybrid Time-Series Forecasting Models for Traffic Flow Prediction

    Get PDF
    Traffic flow forecast is critical in today’s transportation system since it is necessary to construct a traffic plan in order to determine a travel route. The goal of this research is to use time-series forecasting models to estimate future traffic in order to reduce traffic congestion on roadways. Minimising prediction error is the most difficult task in traffic prediction. In order to anticipate future traffic flow, the system also requires real-time data from vehicles and roadways. A hybrid autoregressive integrated moving av-erage with multilayer perceptron (ARIMA-MLP) model and a hybrid autoregressive integrated moving average with recurrent neural network (ARIMA-RNN) model are proposed in this paper to address these difficulties. The transportation data are used from the UK Highways data-set. The time-series data are preprocessed using a random walk model. The forecasting models autoregressive inte-grated moving average (ARIMA), recurrent neural net-work (RNN), and multilayer perceptron (MLP) are trained and tested. In the proposed hybrid ARIMA-MLP and ARI-MA-RNN models, the residuals from the ARIMA model are used to train the MLP and RNN models. Then the ef-ficacy of the hybrid system is assessed using the metrics MAE, MSE, RMSE and R2 (peak hour forecast-0.936763, non-peak hour forecast-0.87638 on ARIMA-MLP model and peak hour forecast-0.9416466, non-peak hour fore-cast-0.931917 on ARIMA-RNN model)

    ANN based short-term traffic flow forecasting in undivided two lane highway

    Get PDF
    Abstract Short term traffic forecasting is one of the important fields of study in the transportation domain. Short term traffic forecasting is very useful to develop a more advanced transportation system to control traffic signals and avoid congestions. Several studies have made efforts for short term traffic flow forecasting for divided and undivided highways across the world. However, all these studies relied on the dataset which are greatly varied between countries due to the technology used for transportation data collection. India is a developing country in which efforts are being done to improve the transportation system to avoid congestion and travel time. Two-lane undivided highways with mixed traffic constitute a large portion of Indian road network. This study is an attempt to develop a short term traffic forecasting model using back propagation artificial neural network for two lane undivided highway with mixed traffic conditions in India. The results were compared with random forest, support vector machine, k-nearest neighbor classifier, regression tree and multiple regression models. It was found that back-propagation neural network performs better than other approaches and achieved an R2 value 0.9962, which is a good score

    Urban traffic flow prediction, a spatial-temporal approach

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesCurrent advances in computational technologies such as machine learning combined with traffic data availability are inspiring the development and growth of intelligent transport Systems (ITS). As urban authorities strive for efficient traffic systems, traffic forecasting is a vital element for effective control and management of traffic networks. Traffic forecasting methods have progressed from traditional statistical techniques to optimized data driven methods eulogised with artificial intelligence. Today, most techniques in traffic forecasting are mainly timeseries methods that ignore the spatial impact of traffic networks in traffic flow modelling. The consideration of both spatial and temporal dimensions in traffic forecasting efforts is key to achieving inclusive traffic forecasts. This research paper presents approaches to analyse spatial temporal patterns existing in networks and goes on to use a machine learning model that integrates both spatial and temporal dependency in traffic flow prediction. The application of the model to a traffic dataset for the city of Singapore shows that we can accurately predict traffic flow up to 15 minutes in advance and also accuracy results obtained outperform other classical traffic prediction methods

    Predicting complex system behavior using hybrid modeling and computational intelligence

    Get PDF
    “Modeling and prediction of complex systems is a challenging problem due to the sub-system interactions and dependencies. This research examines combining various computational intelligence algorithms and modeling techniques to provide insights into these complex processes and allow for better decision making. This hybrid methodology provided additional capabilities to analyze and predict the overall system behavior where a single model cannot be used to understand the complex problem. The systems analyzed here are flooding events and fetal health care. The impact of floods on road infrastructure is investigated using graph theory, agent-based traffic simulation, and Long Short-Term Memory deep learning to predict water level rise from river gauge height. Combined with existing infrastructure models, these techniques provide a 15-minute interval for making closure decisions rather than the current 6-hour interval. The second system explored is fetal monitoring, which is essential to diagnose severe fetal conditions such as acidosis. Support Vector Machine and Random Forest were compared to identify the best model for classification of fetal state. This model provided a more accurate classification than existing research on the CTG. A deep learning forecasting model was developed to predict the future values for fetal heart rate and uterine contractions. The forecasting and classification algorithms are then integrated to evaluate the future condition of the fetus. The final model can predict the fetal state 4 minutes ahead to help the obstetricians to plan necessary interventions for preventing acidosis and asphyxiation. In both cases, time series predictions using hybrid modeling provided superior results to existing methods to predict complex behaviors”--Abstract, page iv

    Shape Analysis of Traffic Flow Curves using a Hybrid Computational Analysis

    Get PDF
    This paper highlights and validates the use of shape analysis using Mathematical Morphology tools as a means to develop meaningful clustering of historical data. Furthermore, through clustering more appropriate grouping can be accomplished that can result in the better parameterization or estimation of models. This results in more effective prediction model development. Hence, in an effort to highlight this within the research herein, a Back-Propagation Neural Network is used to validate the classification achieved through the employment of MM tools. Specifically, the Granulometric Size Distribution (GSD) is used to achieve clustering of daily traffic flow patterns based solely on their shape. To ascertain the significance of shape in traffic analysis, a comparative classification analysis of original data and GSD transformed data is carried out. The results demonstrate the significance of functional shape in traffic analysis. In addition, the results validate the need for clustering prior to prediction. It is determined that a span of two through four years of traffic data is found sufficient for training to produce satisfactory BPNN performance

    A Passenger Flow Risk Forecasting Algorithm for High-Speed Railway Transport Hub Based on Surveillance Sensor Networks

    Get PDF
    Passenger flow risk forecasting is a vital task for safety management in high-speed railway transport hub. In this paper, we considered the passenger flow risk forecasting problem in high-speed railway transport hub. Based on the surveillance sensor networks, a passenger flow risk forecasting algorithm was developed based on spatial correlation. Computational results showed that the proposed forecasting approach was effective and significant for the high-speed railway transport hub
    • …
    corecore