106 research outputs found

    High-resolution optical and SAR image fusion for building database updating

    Get PDF
    This paper addresses the issue of cartographic database (DB) creation or updating using high-resolution synthetic aperture radar and optical images. In cartographic applications, objects of interest are mainly buildings and roads. This paper proposes a processing chain to create or update building DBs. The approach is composed of two steps. First, if a DB is available, the presence of each DB object is checked in the images. Then, we verify if objects coming from an image segmentation should be included in the DB. To do those two steps, relevant features are extracted from images in the neighborhood of the considered object. The object removal/inclusion in the DB is based on a score obtained by the fusion of features in the framework of Dempster–Shafer evidence theory

    Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    Get PDF
    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of “algorithm fusion” methods; (3) Establishment of an automatic quality assessment scheme

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Object-based Interpretation Methods for Mapping Built-up Areas

    Get PDF
    Osajulkaisut: Publication 1: Leena Matikainen, Juha Hyyppä, and Marcus E. Engdahl. 2006. Mapping built-up areas from multitemporal interferometric SAR images - A segment-based approach. Photogrammetric Engineering and Remote Sensing, volume 72, number 6, pages 701-714. Publication 2: Leena Matikainen, Juha Hyyppä, and Hannu Hyyppä. 2003. Automatic detection of buildings from laser scanner data for map updating. In: Hans-Gerd Maas, George Vosselman, and Andre Streilein (editors). Proceedings of the ISPRS Working Group III/3 Workshop on 3-D Reconstruction from Airborne Laserscanner and InSAR Data. Dresden, Germany. 8-10 October 2003. International Society for Photogrammetry and Remote Sensing. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, volume 34, part 3/W13, pages 218-224. ISSN 1682-1750. Publication 3: Leena Matikainen, Juha Hyyppä, and Harri Kaartinen. 2009. Comparison between first pulse and last pulse laser scanner data in the automatic detection of buildings. Photogrammetric Engineering and Remote Sensing, volume 75, number 2, pages 133-146. Publication 4: Leena Matikainen. 2006. Improving automation in rule-based interpretation of remotely sensed data by using classification trees. The Photogrammetric Journal of Finland, volume 20, number 1, pages 5-20. Publication 5: Leena Matikainen, Juha Hyyppä, Eero Ahokas, Lauri Markelin, and Harri Kaartinen. 2010. Automatic detection of buildings and changes in buildings for updating of maps. Remote Sensing, volume 2, number 5, pages 1217-1248. Publication 6: Leena Matikainen and Kirsi Karila. 2011. Segment-based land cover mapping of a suburban area - Comparison of high-resolution remotely sensed datasets using classification trees and test field points. Remote Sensing, volume 3, number 8, pages 1777-1804.There is a growing demand for high-quality spatial data and for efficient methods of updating spatial databases. In the present study, automated object-based interpretation methods were developed and tested for coarse land use mapping, detailed land cover and building mapping, and change detection of buildings. Various modern remotely sensed datasets were used in the study. An automatic classification tree method was applied to building detection and land cover classification to automate the development of classification rules. A combination of a permanent land cover classification test field and the classification tree method was suggested and tested to allow rapid analysis and comparison of new datasets. The classification and change detection results were compared with up-to-date map data or reference points to evaluate their quality. The combined use of airborne laser scanner data and digital aerial imagery gave promising results considering topographic mapping. In automated building detection using laser scanner and aerial image data, 96% of all buildings larger than 60 m2 were correctly detected. This accuracy level (96%) is compatible with operational quality requirements. In automated change detection, about 80% of all reference buildings were correctly classified. The overall accuracy of a land cover classification into buildings, trees, vegetated ground and non-vegetated ground using laser scanner and aerial image data was 97% compared with reference points. When aerial image data alone were used, the accuracy was 74%. A comparison between first pulse and last pulse laser scanner data in building detection was also carried out. The comparison showed that the use of last pulse data instead of first pulse data can improve the building detection results. The results yielded by automated interpretation methods could be helpful in the manual updating process of a topographic database. The results could also be used as the basis for further automated processing steps to delineate and reconstruct objects. The synthetic aperture radar (SAR) and optical satellite image data used in the study have their main potential in land cover monitoring applications. The coarse land use classification of a multitemporal interferometric SAR dataset into built-up areas, forests and open areas lead to an overall accuracy of 97% when compared with reference points. This dataset also appeared to be promising for classifying built-up areas into subclasses according to building density. Important topics for further research include more advanced interpretation methods, new and multitemporal datasets, optimal combinations of the datasets, and wider sets of objects and classes. From the practical point of view, work is needed in fitting automated interpretation methods in operational mapping processes and in further testing of the methods.Laadukkaan paikkatiedon tarve kasvaa jatkuvasti, ja paikkatietokantojen ajantasaistukseen tarvitaan tehokkaita menetelmiä. Tässä tutkimuksessa käytettiin useita uudenaikaisia kaukokartoitusaineistoja. Niiden pohjalta kehitettiin ja testattiin automaattisia, objektipohjaisia tulkintamenetelmiä yleispiirteiseen maankäytön luokitteluun, yksityiskohtaiseen maanpeitteen ja rakennusten kartoitukseen sekä rakennusten muutostulkintaan. Rakennusten tulkintaan ja maanpeiteluokitteluun sovellettiin automaattista luokittelupuumenetelmää, jonka avulla voidaan automatisoida luokittelusääntöjen kehittäminen. Uusia aineistoja voidaan analysoida ja vertailla nopeasti, kun luokittelupuumenetelmää käytetään yhdessä pysyvän maanpeiteluokittelutestikentän kanssa. Luokittelu- ja muutostulkintatuloksia verrattiin niiden laadun arvioimiseksi ajantasaiseen kartta-aineistoon tai referenssipisteisiin. Ilmalaserkeilausaineisto ja digitaalinen ilmakuva-aineisto yhdessä antoivat lupaavia tuloksia maastotietojen kartoitusta ajatellen. Automaattisessa rakennusten tulkinnassa 96 % kaikista yli 60 m2:n rakennuksista tunnistettiin oikein. Tämä tarkkuustaso (96 %) vastaa käytännön laatuvaatimuksia. Automaattisessa muutostulkinnassa noin 80 % kaikista referenssirakennuksista luokiteltiin oikein. Maanpeiteluokittelussa neljään luokkaan saavutettiin laserkeilaus- ja ilmakuva-aineistoa käyttäen 97 %:n kokonaistarkkuus referenssipisteisiin verrattuna. Pelkkää ilmakuva-aineistoa käytettäessä tarkkuus oli 74 %. Tutkimuksessa verrattiin myös ensimmäiseen ja viimeiseen paluupulssiin perustuvia laserkeilausaineistoja rakennusten tulkinnassa. Vertailu osoitti, että viimeisen paluupulssin käyttö ensimmäisen sijasta voi parantaa tulkintatuloksia. Automaattisten tulkintamenetelmien tuloksista voisi olla hyötyä maastotietojen manuaalisessa ajantasaistusprosessissa tai lähtötietoina kohteiden automaattisessa rajauksessa ja mallinnuksessa. Tutkimuksessa käytettyjen synteettisen apertuurin tutkan (SAR) tuottamien kuvien ja optisen satelliittikuvan tärkeimmät hyödyntämismahdollisuudet liittyvät maanpeitteen kartoitukseen. Yleispiirteisessä maankäyttöluokittelussa kolmeen luokkaan saavutettiin moniaikaista interferometrista SAR-aineistoa käyttäen 97 %:n kokonaistarkkuus referenssipisteisiin verrattuna. Aineisto osoittautui lupaavaksi myös rakennettujen alueiden jatkoluokitteluun rakennustiheyden perusteella. Jatkotutkimusten kannalta tärkeitä aiheita ovat edistyneemmät tulkintamenetelmät, uudet ja moniaikaiset aineistot, eri aineistojen optimaalinen yhdistäminen sekä useampien kohteiden ja luokkien tarkastelu. Käytännön näkökulmasta työtä tarvitaan automaattisten tulkintamenetelmien sovittamiseksi operatiivisiin kartoitusprosesseihin. Myös menetelmien testausta on jatkettava

    Evaluation of a Change Detection Methodology by Means of Binary Thresholding Algorithms and Informational Fusion Processes

    Get PDF
    Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth’s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution

    Optimized Deep Belief Neural Network for Semantic Change Detection in Multi-Temporal Image

    Get PDF
    Nowadays, a massive quantity of remote sensing images is utilized from tremendous earth observation platforms. For processing a wide range of remote sensing data to be transferred based on knowledge and information of them. Therefore, the necessity for providing the automated technologies to deal with multi-spectral image is done in terms of change detection. Multi-spectral images are associated with plenty of corrupted data like noise and illumination. In order to deal with such issues several techniques are utilized but they are not effective for sensitive noise and feature correlation may be missed. Several machine learning-based techniques are introduced to change detection but it is not effective for obtaining the relevant features. In other hand, the only limited datasets are available in open-source platform; therefore, the development of new proposed model is becoming difficult. In this work, an optimized deep belief neural network model is introduced based on semantic modification finding for multi-spectral images. Initially, input images with noise destruction and contrast normalization approaches are applied. Then to notice the semantic changes present in the image, the Semantic Change Detection Deep Belief Neural Network (SCD-DBN) is introduced. This research focusing on providing a change map based on balancing noise suppression and managing the edge of regions in an appropriate way. The new change detection method can automatically create features for different images and improve search results for changed regions. The projected technique shows a lower missed finding rate in the Semantic Change Detection dataset and a more ideal rate than other approaches
    corecore