157 research outputs found

    Efficiently Tracking Homogeneous Regions in Multichannel Images

    Full text link
    We present a method for tracking Maximally Stable Homogeneous Regions (MSHR) in images with an arbitrary number of channels. MSHR are conceptionally very similar to Maximally Stable Extremal Regions (MSER) and Maximally Stable Color Regions (MSCR), but can also be applied to hyperspectral and color images while remaining extremely efficient. The presented approach makes use of the edge-based component-tree which can be calculated in linear time. In the tracking step, the MSHR are localized by matching them to the nodes in the component-tree. We use rotationally invariant region and gray-value features that can be calculated through first and second order moments at low computational complexity. Furthermore, we use a weighted feature vector to improve the data association in the tracking step. The algorithm is evaluated on a collection of different tracking scenes from the literature. Furthermore, we present two different applications: 2D object tracking and the 3D segmentation of organs.Comment: to be published in ICPRS 2017 proceeding

    An Engineering Evaluation on the Glimpse of Satellite Image Pre-processing Utility Tools

    Get PDF
    The advancement of technology in the area of satellite remote sensing has been generating voluminous amount of satellite images at regular intervals regularly. The satellite image analysis derive very useful, invaluable and essential inputs for various applications such as disaster management, civil aviation, meteorology, ocean observation systems, earth science studies and defense applications, etc. The satellite image analysis technique provides the necessary inputs for image preprocessing systems as a basic prerequisite and essential ingredient. Over the past several years many satellite image preprocessing tools have been developed with various features. The choice of satellite image preprocessing tools basically depend on the purpose of image analysis, the features of satellite image preprocessing tools and the specific need and application. Due to a large number of applications of satellite images, user has a wide ranging choice to select optimally the right preprocessing tool for the right application. Thus, the present study helps in aiding the proper understanding and selection of the various satellite image preprocessing tools and their features for any specific application. To facilitate this scheme, the current study has identified various satellite image preprocessing tools and prominent features of the desired tool. Briefly, the study presents a clear understanding with specific examples on the various available tools and features for the user specific application for the desired satellite images. The various features of the satellite image preprocessing tools have been presented in detail for ready reference, guidance and usage

    A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables

    Get PDF
    A modular system for performing Geographic Object-Based Image Analysis (GEOBIA), using entirely open source (General Public License compatible) software, is presented based around representing objects as raster clumps and storing attributes as a raster attribute table (RAT). The system utilizes a number of libraries, developed by the authors: The Remote Sensing and GIS Library (RSGISLib), the Raster I/O Simplification (RIOS) Python Library, the KEA image format and TuiView image viewer. All libraries are accessed through Python, providing a common interface on which to build processing chains. Three examples are presented, to demonstrate the capabilities of the system: (1) classification of mangrove extent and change in French Guiana; (2) a generic scheme for the classification of the UN-FAO land cover classification system (LCCS) and their subsequent translation to habitat categories; and (3) a national-scale segmentation for Australia. The system presented provides similar functionality to existing GEOBIA packages, but is more flexible, due to its modular environment, capable of handling complex classification processes and applying them to larger datasets

    Mapping urban tree species in a tropical environment using airborne multispectral and LiDAR data

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesAccurate and up-to-date urban tree inventory is an essential resource for the development of strategies towards sustainable urban planning, as well as for effective management and preservation of biodiversity. Trees contribute to thermal comfort within urban centers by lessening heat island effect and have a direct impact in the reduction of air pollution. However, mapping individual trees species normally involves time-consuming field work over large areas or image interpretation performed by specialists. The integration of airborne LiDAR data with high-spatial resolution and multispectral aerial image is an alternative and effective approach to differentiate tree species at the individual crown level. This thesis aims to investigate the potential of such remotely sensed data to discriminate 5 common urban tree species using traditional Machine Learning classifiers (Random Forest, Support Vector Machine, and k-Nearest Neighbors) in the tropical environment of Salvador, Brazil. Vegetation indices and texture information were extracted from multispectral imagery, and LiDAR-derived variables for tree crowns, were tested separately and combined to perform tree species classification applying three different classifiers. Random Forest outperformed the other two classifiers, reaching overall accuracy of 82.5% when using combined multispectral and LiDAR data. The results indicate that (1) given the similarity in spectral signature, multispectral data alone is not sufficient to distinguish tropical tree species (only k-NN classifier could detect all species); (2) height values and intensity of crown returns points were the most relevant LiDAR features, combination of both datasets improved accuracy up to 20%; (3) generation of canopy height model derived from LiDAR point cloud is an effective method to delineate individual tree crowns in a semi-automatic approach

    Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices

    Get PDF
    There are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors with high spatial, spectral and temporal resolutions. However, transforming these raw data into high-quality datasets that could be used for training AI and specifically deep learning models are technically challenging. This paper describes the process and results of synthesizing labelled-datasets that could be used for training AI (specifically Convolutional Neural Networks) models for determining agricultural land use pattern to support decisions for sustainable farming. In our opinion, this work is a significant step forward in addressing the paucity of usable datasets for developing scalable GeoAI models for sustainable agriculture

    Stand Delineation of Pinus sylvestris L. Plantations Suffering Decline Processes Based on Biophysical Tree Crown Variables: A Necessary Tool for Adaptive Silviculture

    Get PDF
    Many planted Pinus forests are severely affected by defoliation and mortality processes caused by pests and droughts. The mapping of forest tree crown variables (e.g., leaf area index and pigments) is particularly useful in stand delineation for the management of declining forests. This work explores the potential of integrating multispectral WorldView-2 (WV-2) and Airborne Laser Scanning (ALS) data for stand delineation based on selected tree crown variables in Pinus sylvestris plantations in southern Spain. Needle pigments (chlorophyll and carotenes) and leaf area index (LAI) were quantified. Eight vegetation indices and ALS-derived metrics were produced, and seven predictors were selected to estimate and map tree crown variables using a Random Forest method and Gini index. Chlorophylls a and b (Chla and Chlb) were significantly higher in the non-defoliated and moderately defoliated trees than in severely defoliated trees (F = 14.02, p < 0.001 for Chla; F = 13.09, p < 0.001 for Chlb). A similar response was observed for carotenoids (Car) (F = 14.13, p < 0.001). The LAI also showed significant differences among the defoliation levels (F = 26.5, p < 0.001). The model for the chlorophyll a pigment used two vegetation indices, Plant Senescence Reflectance Index (PSRI) and Carotenoid Reflectance Index (CRI); three WV-2 band metrics, and three ALS metrics. The model built to describe the tree Chlb content used similar variables. The defoliation classification model was established with a single vegetation index, Green Normalized Difference Vegetation Index (GNDVI); two metrics of the blue band, and two ALS metrics. The pigment contents models provided R2 values of 0.87 (Chla, RMSE = 12.98%), 0.74 (Chlb, RMSE = 10.39%), and 0.88 (Car, RMSE = 10.05%). The cross-validated confusion matrix achieved a high overall classification accuracy (84.05%) and Kappa index (0.76). Defoliation and Chla showed the validation values for segmentations and, therefore, in the generation of the stand delineation. A total of 104 stands were delineated, ranging from 6.96 to 54.62 ha (average stand area = 16.26 ha). The distribution map of the predicted severity values in the P. sylvestris plantations showed a mosaic of severity patterns at the stand and individual tree scales. Overall, the findings of this work underscore the potential of WV-2 and ALS data integration for the assessment of stand delineation based on tree health status. The derived cartography is a relevant tool for developing adaptive silvicultural practices to reduce Pinus sylvestris mortality in planted forests at risk due to climate change

    Proceedings of the 3rd Open Source Geospatial Research & Education Symposium OGRS 2014

    Get PDF
    The third Open Source Geospatial Research &amp; Education Symposium (OGRS) was held in Helsinki, Finland, on 10 to 13 June 2014. The symposium was hosted and organized by the Department of Civil and Environmental Engineering, Aalto University School of Engineering, in partnership with the OGRS Community, on the Espoo campus of Aalto University. These proceedings contain the 20 papers presented at the symposium. OGRS is a meeting dedicated to exchanging ideas in and results from the development and use of open source geospatial software in both research and education.  The symposium offers several opportunities for discussing, learning, and presenting results, principles, methods and practices while supporting a primary theme: how to carry out research and educate academic students using, contributing to, and launching open source geospatial initiatives. Participating in open source initiatives can potentially boost innovation as a value creating process requiring joint collaborations between academia, foundations, associations, developer communities and industry. Additionally, open source software can improve the efficiency and impact of university education by introducing open and freely usable tools and research results to students, and encouraging them to get involved in projects. This may eventually lead to new community projects and businesses. The symposium contributes to the validation of the open source model in research and education in geoinformatics
    corecore