138 research outputs found

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    Crossing-Free Acyclic Hamiltonian Path Completion for Planar st-Digraphs

    Full text link
    In this paper we study the problem of existence of a crossing-free acyclic hamiltonian path completion (for short, HP-completion) set for embedded upward planar digraphs. In the context of book embeddings, this question becomes: given an embedded upward planar digraph GG, determine whether there exists an upward 2-page book embedding of GG preserving the given planar embedding. Given an embedded stst-digraph GG which has a crossing-free HP-completion set, we show that there always exists a crossing-free HP-completion set with at most two edges per face of GG. For an embedded NN-free upward planar digraph GG, we show that there always exists a crossing-free acyclic HP-completion set for GG which, moreover, can be computed in linear time. For a width-kk embedded planar stst-digraph GG, we show that we can be efficiently test whether GG admits a crossing-free acyclic HP-completion set.Comment: Accepted to ISAAC200

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    Upward Book Embeddings of st-Graphs

    Get PDF
    We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices of the graph appear in a topological ordering along the spine of the book. We show that testing whether a graph admits a kUBE is NP-complete for k >= 3. A hardness result for this problem was previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result, we focus our attention on k=2. On the algorithmic side, we present polynomial-time algorithms for testing the existence of 2UBEs of planar st-graphs with branchwidth b and of plane st-graphs whose faces have a special structure. These algorithms run in O(f(b)* n+n^3) time and O(n) time, respectively, where f is a singly-exponential function on b. Moreover, on the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE

    Algorithms for Visualizing Phylogenetic Networks

    Full text link
    We study the problem of visualizing phylogenetic networks, which are extensions of the Tree of Life in biology. We use a space filling visualization method, called DAGmaps, in order to obtain clear visualizations using limited space. In this paper, we restrict our attention to galled trees and galled networks and present linear time algorithms for visualizing them as DAGmaps.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Bar 1-Visibility Graphs and their relation to other Nearly Planar Graphs

    Full text link
    A graph is called a strong (resp. weak) bar 1-visibility graph if its vertices can be represented as horizontal segments (bars) in the plane so that its edges are all (resp. a subset of) the pairs of vertices whose bars have a ϵ\epsilon-thick vertical line connecting them that intersects at most one other bar. We explore the relation among weak (resp. strong) bar 1-visibility graphs and other nearly planar graph classes. In particular, we study their relation to 1-planar graphs, which have a drawing with at most one crossing per edge; quasi-planar graphs, which have a drawing with no three mutually crossing edges; the squares of planar 1-flow networks, which are upward digraphs with in- or out-degree at most one. Our main results are that 1-planar graphs and the (undirected) squares of planar 1-flow networks are weak bar 1-visibility graphs and that these are quasi-planar graphs

    On Families of Planar DAGs with Constant Stack Number

    Full text link
    A kk-stack layout (or kk-page book embedding) of a graph consists of a total order of the vertices, and a partition of the edges into kk sets of non-crossing edges with respect to the vertex order. The stack number of a graph is the minimum kk such that it admits a kk-stack layout. In this paper we study a long-standing problem regarding the stack number of planar directed acyclic graphs (DAGs), for which the vertex order has to respect the orientation of the edges. We investigate upper and lower bounds on the stack number of several families of planar graphs: We prove constant upper bounds on the stack number of single-source and monotone outerplanar DAGs and of outerpath DAGs, and improve the constant upper bound for upward planar 3-trees. Further, we provide computer-aided lower bounds for upward (outer-) planar DAGs

    Upward Point-Set Embeddability

    Full text link
    We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph DD has an upward planar embedding into a point set SS. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of kk-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 11-switch tree), we show that not every kk-switch tree admits an upward planar straight-line embedding into any convex point set, for any k≥2k \geq 2. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete
    • …
    corecore