9,050 research outputs found

    Quantum Monodromy in the Isotropic 3-Dimensional Harmonic Oscillator

    Get PDF
    The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint spectrum of the Hamilton operator, the zz component of the angular momentum, and a quartic integral obtained from separation in prolate spheroidal coordinates has quantum monodromy for sufficiently large energies. This means that one cannot globally assign quantum numbers to the joint spectrum. The effect can be classically explained by showing that the corresponding Liouville integrable system has a non-degenerate focus-focus point, and hence Hamiltonian monodromy.Comment: 15 pages, 8 figure

    On occurrence of spectral edges for periodic operators inside the Brillouin zone

    Full text link
    The article discusses the following frequently arising question on the spectral structure of periodic operators of mathematical physics (e.g., Schroedinger, Maxwell, waveguide operators, etc.). Is it true that one can obtain the correct spectrum by using the values of the quasimomentum running over the boundary of the (reduced) Brillouin zone only, rather than the whole zone? Or, do the edges of the spectrum occur necessarily at the set of ``corner'' high symmetry points? This is known to be true in 1D, while no apparent reasons exist for this to be happening in higher dimensions. In many practical cases, though, this appears to be correct, which sometimes leads to the claims that this is always true. There seems to be no definite answer in the literature, and one encounters different opinions about this problem in the community. In this paper, starting with simple discrete graph operators, we construct a variety of convincing multiply-periodic examples showing that the spectral edges might occur deeply inside the Brillouin zone. On the other hand, it is also shown that in a ``generic'' case, the situation of spectral edges appearing at high symmetry points is stable under small perturbations. This explains to some degree why in many (maybe even most) practical cases the statement still holds.Comment: 25 pages, 10 EPS figures. Typos corrected and a reference added in the new versio

    Modification of the standard model for the lanthanides

    Full text link
    We show that incorporation of strong electron correlations into the Kohn-Sham scheme of band structure calculations leads to a modification of the standard model of the lanthanides and that this procedure removes the existing discrepancy between theory and experiment concerning the ground state properties. Within the picture suggested, part of the upper Hubbard ff-band is occupied due to conduction band-ff-mixing interaction (that is renormalized due to correlations) and this contributes to the cohesive energy of the crystal. The lower Hubbard band has zero width and describes fermionic excitations in the shell of localized ff-s. Fully self-consistent calculations (with respect to both charge density and many-electron population numbers of the ff-shell) of the equilibrium volume V0V_0 and the bulk modulus of selected lanthanides have been performed and a good agreement is obtained.Comment: 1 fi

    New Concept of Solvability in Quantum Mechanics

    Get PDF
    In a pre-selected Hilbert space of quantum states the unitarity of the evolution is usually guaranteed via a pre-selection of the generator (i.e., of the Hamiltonian operator) in self-adjoint form. In fact, the simultaneous use of both of these pre-selections is overrestrictive. One should be allowed to make a given Hamiltonian self-adjoint only after an {\em ad hoc} generalization of Hermitian conjugation. We argue that in the generalized, hidden-Hermiticity scenario with nontrivial metric, the current concept of solvability (meaning, most often, the feasibility of a non-numerical diagonalization of Hamiltonian) requires a generalization allowing for a non-numerical form of metric. A few illustrative solvable quantum models of this type are presented.Comment: 24 pages, 8 figure
    corecore