3,724 research outputs found

    New bounds on the signed total domination number of graphs

    Full text link
    In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turan, we present a sharp lower bound on this parameter for graphs with no complete graph of order r+1 as a subgraph. Also, we prove that n-2(s-s') is an upper bound on the signed total domination number of any tree of order n with s support vertices and s' support vertives of degree two. Moreover, we characterize all trees attainig this bound.Comment: This paper contains 11 pages and one figur

    On the inverse signed total domination number in graphs

    Full text link
    In this paper, we study the inverse signed total domination number in graphs and present new lower and upper bounds on this parameter. For example by making use of the classic theorem of Turan (1941), we present a sharp upper bound for graphs with no induced complete subgraph of order greater than two. Also, we bound this parameter for a tree in terms of its order and the number of leaves and characterize all trees attaining this bound

    Aspects of functional variations of domination in graphs.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2003.Let G = (V, E) be a graph. For any real valued function f : V >R and SCV, let f (s) = z ues f(u). The weight of f is defined as f(V). A signed k-subdominating function (signed kSF) of G is defined as a function f : V > {-I, I} such that f(N[v]) > 1 for at least k vertices of G, where N[v] denotes the closed neighborhood of v. The signed k-subdomination number of a graph G, denoted by yks-11(G), is equal to min{f(V) I f is a signed kSF of G}. If instead of the range {-I, I}, we require the range {-I, 0, I}, then we obtain the concept of a minus k-subdominating function. Its associated parameter, called the minus k-subdomination number of G, is denoted by ytks-101(G). In chapter 2 we survey recent results on signed and minus k-subdomination in graphs. In Chapter 3, we compute the signed and minus k-subdomination numbers for certain complete multipartite graphs and their complements, generalizing results due to Holm [30]. In Chapter 4, we give a lower bound on the total signed k-subdomination number in terms of the minimum degree, maximum degree and the order of the graph. A lower bound in terms of the degree sequence is also given. We then compute the total signed k-subdomination number of a cycle, and present a characterization of graphs G with equal total signed k-subdomination and total signed l-subdomination numbers. Finally, we establish a sharp upper bound on the total signed k-subdomination number of a tree in terms of its order n and k where 1 < k < n, and characterize trees attaining these bounds for certain values of k. For this purpose, we first establish the total signed k-subdomination number of simple structures, including paths and spiders. In Chapter 5, we show that the decision problem corresponding to the computation of the total minus domination number of a graph is NP-complete, even when restricted to bipartite graphs or chordal graphs. For a fixed k, we show that the decision problem corresponding to determining whether a graph has a total minus domination function of weight at most k may be NP-complete, even when restricted to bipartite or chordal graphs. Also in Chapter 5, linear time algorithms for computing Ytns-11(T) and Ytns-101(T) for an arbitrary tree T are presented, where n = n(T). In Chapter 6, we present cubic time algorithms to compute Ytks-11(T) and Ytks-101l(T) for a tree T. We show that the decision problem corresponding to the computation of Ytks-11(G) is NP-complete, and that the decision problem corresponding to the computation of Ytks-101 (T) is NP-complete, even for bipartite graphs. In addition, we present cubic time algorithms to computeYks-11(T) and Yks-101(T) for a tree T, solving problems appearing in [25]

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and X⊆VX\subseteq V, if δX(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set M⊆VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if δM(v)≥δV(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:V→{−1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=∑v∈N(v)f(v)≥tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set S⊆VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if δS(v)≥δV−S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016
    • …
    corecore