6,690 research outputs found

    On Index Coding and Graph Homomorphism

    Full text link
    In this work, we study the problem of index coding from graph homomorphism perspective. We show that the minimum broadcast rate of an index coding problem for different variations of the problem such as non-linear, scalar, and vector index code, can be upper bounded by the minimum broadcast rate of another index coding problem when there exists a homomorphism from the complement of the side information graph of the first problem to that of the second problem. As a result, we show that several upper bounds on scalar and vector index code problem are special cases of one of our main theorems. For the linear scalar index coding problem, it has been shown in [1] that the binary linear index of a graph is equal to a graph theoretical parameter called minrank of the graph. For undirected graphs, in [2] it is shown that minrank(G)=k\mathrm{minrank}(G) = k if and only if there exists a homomorphism from Gˉ\bar{G} to a predefined graph Gˉk\bar{G}_k. Combining these two results, it follows that for undirected graphs, all the digraphs with linear index of at most k coincide with the graphs GG for which there exists a homomorphism from Gˉ\bar{G} to Gˉk\bar{G}_k. In this paper, we give a direct proof to this result that works for digraphs as well. We show how to use this classification result to generate lower bounds on scalar and vector index. In particular, we provide a lower bound for the scalar index of a digraph in terms of the chromatic number of its complement. Using our framework, we show that by changing the field size, linear index of a digraph can be at most increased by a factor that is independent from the number of the nodes.Comment: 5 pages, to appear in "IEEE Information Theory Workshop", 201

    Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β\beta-Mixing Processes

    Full text link
    Pac-Bayes bounds are among the most accurate generalization bounds for classifiers learned from independently and identically distributed (IID) data, and it is particularly so for margin classifiers: there have been recent contributions showing how practical these bounds can be either to perform model selection (Ambroladze et al., 2007) or even to directly guide the learning of linear classifiers (Germain et al., 2009). However, there are many practical situations where the training data show some dependencies and where the traditional IID assumption does not hold. Stating generalization bounds for such frameworks is therefore of the utmost interest, both from theoretical and practical standpoints. In this work, we propose the first - to the best of our knowledge - Pac-Bayes generalization bounds for classifiers trained on data exhibiting interdependencies. The approach undertaken to establish our results is based on the decomposition of a so-called dependency graph that encodes the dependencies within the data, in sets of independent data, thanks to graph fractional covers. Our bounds are very general, since being able to find an upper bound on the fractional chromatic number of the dependency graph is sufficient to get new Pac-Bayes bounds for specific settings. We show how our results can be used to derive bounds for ranking statistics (such as Auc) and classifiers trained on data distributed according to a stationary {\ss}-mixing process. In the way, we show how our approach seemlessly allows us to deal with U-processes. As a side note, we also provide a Pac-Bayes generalization bound for classifiers learned on data from stationary φ\varphi-mixing distributions.Comment: Long version of the AISTATS 09 paper: http://jmlr.csail.mit.edu/proceedings/papers/v5/ralaivola09a/ralaivola09a.pd

    Local Graph Coloring and Index Coding

    Full text link
    We present a novel upper bound for the optimal index coding rate. Our bound uses a graph theoretic quantity called the local chromatic number. We show how a good local coloring can be used to create a good index code. The local coloring is used as an alignment guide to assign index coding vectors from a general position MDS code. We further show that a natural LP relaxation yields an even stronger index code. Our bounds provably outperform the state of the art on index coding but at most by a constant factor.Comment: 14 Pages, 3 Figures; A conference version submitted to ISIT 2013; typos correcte
    corecore