90 research outputs found

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog

    Speaking in circles: completeness in Kant's metaphysics and mathematics

    Full text link
    This dissertation presents and responds to the following problem. For Kant a field of enquiry can be a science only if it is systematic. Most sciences achieve systematicity through having a unified content and method. Physics, for example, has a unified content, as it is the science of matter in motion, and a unified method because all claims in physics must be verified through empirical testing. In order for metaphysics to be a science it also must be systematic. However, metaphysics cannot have a unified content or method because metaphysicians lack a positive conception of what its content and method are. On Kant's account, metaphysicians can say with certainty what metaphysics does not study and what methods it cannot use, but never how it should proceed. Without unified content and method systematicity can only be guaranteed by some either means, namely, completeness. Without completeness metaphysics cannot have systematicity and every science must be systematic. Completeness can only be achieved if we severely limit the scope of metaphysics so that it contains only the conditions for the possibility of experience. This dissertation defends the claims made about the centrality of completeness in understanding Kant's conception of metaphysics as a science in two ways. First, the first two chapters point to a substantial body of textual evidence that supports the idea that Kant was directly concerned about the notion of completeness and links it to his conception of metaphysics as a science. Chapters 3 and 4 consider some possible objections to thinking that metaphysics as a science can be complete, giving special consideration to Gödel's incompleteness theorem. Chapter 5 explains why, if this position is as clear as this dissertation has argued, previous scholars have failed to acknowledge it. Giving a full answer to this question requires considering the general neglect of the "Doctrine of Method" section of Kant's primary theoretical text, The Critique of Pure Reason. The Doctrine of Method contains many of the passages which most directly support my thesis. Chapter 6 explains why scholars have ignored this important passage and argues that they should not continue to do so

    On Relating Theories: Proof-Theoretical Reduction

    Get PDF
    The notion of proof-theoretical or finitistic reduction of one theory to another has a long tradition. Feferman and Sieg (Buchholz et al., Iterated inductive definitions and subsystems of analysis. Springer, Berlin, 1981, Chap. 1) and Feferman in (J Symbol Logic 53:364–384, 1988) made first steps to delineate it in more formal terms. The first goal of this paper is to corroborate their view that this notion has the greatest explanatory reach and is superior to others, especially in the context of foundational theories, i.e., theories devised for the purpose of formalizing and presenting various chunks of mathematics. A second goal is to address a certain puzzlement that was expressed in Feferman’s title of his Clermont-Ferrand lectures at the Logic Colloquium 1994: “How is it that finitary proof theory became infinitary?” Hilbert’s aim was to use proof theory as a tool in his finitary consistency program to eliminate the actual infinite in mathematics from proofs of real statements. Beginning in the 1950s, however, proof theory began to employ infinitary methods. Infinitary rules and concepts, such as ordinals, entered the stage. In general, the more that such infinitary methods were employed, the farther did proof theory depart from its initial aims and methods, and the closer did it come instead to ongoing developments in recursion theory, particularly as generalized to admissible sets; in both one makes use of analogues of regular cardinals, as well as “large” cardinals (inaccessible, Mahlo, etc.). (Feferman 1994). The current paper aims to explain how these infinitary tools, despite appearances to the contrary, can be formalized in an intuitionistic theory that is finitistically reducible to (actually Π02 -conservative over) intuitionistic first order arithmetic, also known as Heyting arithmetic. Thus we have a beautiful example of Hilbert’s program at work, exemplifying the Hilbertian goal of moving from the ideal to the real by eliminating ideal elements

    A defence of predicativism as a philosophy of mathematics

    Get PDF
    A specification of a mathematical object is impredicative if it essentially involves quantification over a domain which includes the object being specified (or sets which contain that object, or similar). The basic worry is that we have no non-circular way of understanding such a specification. Predicativism is the view that mathematics should be limited to the study of objects which can be specified predicatively. There are two parts to predicativism. One is the criticism of the impredicative aspects of classical mathematics. The other is the positive project, begun by Weyl in Das Kontinuum (1918), to reconstruct as much as possible of classical mathematics on the basis of a predicatively acceptable set theory, which accepts only countably infinite objects. This is a revisionary project, and certain parts of mathematics will not be saved. Chapter 2 contains an account of the historical background to the predicativist project. The rigorization of analysis led to Dedekind's and Cantor's theories of the real numbers, which relied on the new notion of abitrary infinite sets; this became a central part of modern classical set theory. Criticism began with Kronecker; continued in the debate about the acceptability of Zermelo's Axiom of Choice; and was somewhat clarified by Poincaré and Russell. In the light of this, chapter 3 examines the formulation of, and motivations behind the predicativist position. Chapter 4 begins the critical task by detailing the epistemological problems with the classical account of the continuum. Explanations of classicism which appeal to second-order logic, set theory, and primitive intuition are examined and are found wanting. Chapter 5 aims to dispell the worry that predicativism might collapses into mathematical intuitionism. I assess some of the arguments for intuitionism, especially the Dummettian argument from indefinite extensibility. I argue that the natural numbers are not indefinitely extensible, and that, although the continuum is, we can nonetheless make some sense of classical quantification over it. We need not reject the Law of Excluded Middle. Chapter 6 begins the positive work by outlining a predicatively acceptable account of mathematical objects which justifies the Vicious Circle Principle. Chapter 7 explores the appropriate shape of formalized predicative mathematics, and the question of just how much mathematics is predicatively acceptable. My conclusion is that all of the mathematics which we need can be predicativistically justified, and that such mathematics is particularly transparent to reason. This calls into question one currently prevalent view of the nature of mathematics, on which mathematics is justified by quasi-empirical means.Supported by the Arts and Humanities Research Council [grant number 111315]
    • 

    corecore