44 research outputs found

    Upper bounds for the bondage number of graphs on topological surfaces

    Get PDF
    The bondage number b(G) of a graph G is the smallest number of edges of G whose removal from G results in a graph having the domination number larger than that of G. We show that, for a graph G having the maximum vertex degree Δ(G)\Delta(G) and embeddable on an orientable surface of genus h and a non-orientable surface of genus k, b(G)min{Δ(G)+h+2,Δ(G)+k+1}b(G)\le \min\{\Delta(G)+h+2, \Delta(G)+k+1\}. This generalizes known upper bounds for planar and toroidal graphs.Comment: 10 pages; Updated version (April 2011); Presented at the 7th ECCC, Wolfville (Nova Scotia, Canada), May 4-6, 2011, and the 23rd BCC, Exeter (England, UK), July 3-8, 201

    Upper bounds for domination related parameters in graphs on surfaces

    Get PDF
    AbstractIn this paper we give tight upper bounds on the total domination number, the weakly connected domination number and the connected domination number of a graph in terms of order and Euler characteristic. We also present upper bounds for the restrained bondage number, the total restrained bondage number and the restricted edge connectivity of graphs in terms of the orientable/nonorientable genus and maximum degree

    Constraint-Enabled Design Information Representation for Mechanical Products Over the Internet

    Get PDF
    Global economy has made manufacturing industry become more distributed than ever before. Product design requires more involvement from various technical disciplines at different locations. In such a geographically and temporally distributed environment, efficient and effective collaboration on design is vital to maintain product quality and organizational competency. Interoperability of design information is one of major barriers for collaborative design. Current standard CAD data formats do not support design collaboration effectively in terms of design information and knowledge capturing, exchange, and integration within the design cycle. Multidisciplinary design constraints cannot be represented and transferred among different groups, and design information cannot be integrated efficiently within a distributed environment. Uncertainty of specification cannot be modeled at early design stages, while constraints for optimization are not embedded in design data. In this work, a design information model, Universal Linkage model, is developed to represent design related information for mechanical products in a distributed form. It incorporates geometric and non-geometric constraints with traditional geometry and topology elements, thus allows more design knowledge sharing in collaborative design. Segments of design data are linked and integrated into a complete product model, thus support lean design information capturing, storage, and query. The model is represented by Directed Hyper Graph and Product Markup Language to preserve extensibility and openness. Incorporating robustness consideration, an Interval Geometric Modeling scheme is presented, in which numerical parameters are represented by interval values. This scheme is able to capture uncertainty and inexactness of design and reduces the chances of conflict in constraint imposition. It provides a unified constraint representation for the process of conceptual design, detailed design, and design optimization. Corresponding interval constraint solving methods are studied
    corecore