11,164 research outputs found

    Quantum Capacities for Entanglement Networks

    Full text link
    We discuss quantum capacities for two types of entanglement networks: Q\mathcal{Q} for the quantum repeater network with free classical communication, and R\mathcal{R} for the tensor network as the rank of the linear operation represented by the tensor network. We find that Q\mathcal{Q} always equals R\mathcal{R} in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities Q1\mathcal{Q}_1 and R1\mathcal{R}_1 are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that R1\mathcal{R}_1 is a natural upper bound of Q1\mathcal{Q}_1. We analyze the possible gap between R1\mathcal{R}_1 and Q1\mathcal{Q}_1 for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network

    Cycle Equivalence of Graph Dynamical Systems

    Get PDF
    Graph dynamical systems (GDSs) can be used to describe a wide range of distributed, nonlinear phenomena. In this paper we characterize cycle equivalence of a class of finite GDSs called sequential dynamical systems SDSs. In general, two finite GDSs are cycle equivalent if their periodic orbits are isomorphic as directed graphs. Sequential dynamical systems may be thought of as generalized cellular automata, and use an update order to construct the dynamical system map. The main result of this paper is a characterization of cycle equivalence in terms of shifts and reflections of the SDS update order. We construct two graphs C(Y) and D(Y) whose components describe update orders that give rise to cycle equivalent SDSs. The number of components in C(Y) and D(Y) is an upper bound for the number of cycle equivalence classes one can obtain, and we enumerate these quantities through a recursion relation for several graph classes. The components of these graphs encode dynamical neutrality, the component sizes represent periodic orbit structural stability, and the number of components can be viewed as a system complexity measure

    Cyclic Boolean circuits

    Get PDF
    A Boolean circuit is a collection of gates and wires that performs a mapping from Boolean inputs to Boolean outputs. The accepted wisdom is that such circuits must have acyclic (i.e., loop-free or feed-forward) topologies. In fact, the model is often defined this way – as a directed acyclic graph (DAG). And yet simple examples suggest that this is incorrect. We advocate that Boolean circuits should have cyclic topologies (i.e., loops or feedback paths). In other work, we demonstrated the practical implications of this view: digital circuits can be designed with fewer gates if they contain cycles. In this paper, we explore the theoretical underpinnings of the idea. We show that the complexity of implementing Boolean functions can be lower with cyclic topologies than with acyclic topologies. With examples, we show that certain Boolean functions can be implemented by cyclic circuits with as little as one-half the number gates that are required by equivalent acyclic circuits
    • …
    corecore