74 research outputs found

    An extension of Chaitin's halting probability \Omega to a measurement operator in an infinite dimensional quantum system

    Full text link
    This paper proposes an extension of Chaitin's halting probability \Omega to a measurement operator in an infinite dimensional quantum system. Chaitin's \Omega is defined as the probability that the universal self-delimiting Turing machine U halts, and plays a central role in the development of algorithmic information theory. In the theory, there are two equivalent ways to define the program-size complexity H(s) of a given finite binary string s. In the standard way, H(s) is defined as the length of the shortest input string for U to output s. In the other way, the so-called universal probability m is introduced first, and then H(s) is defined as -log_2 m(s) without reference to the concept of program-size. Mathematically, the statistics of outcomes in a quantum measurement are described by a positive operator-valued measure (POVM) in the most general setting. Based on the theory of computability structures on a Banach space developed by Pour-El and Richards, we extend the universal probability to an analogue of POVM in an infinite dimensional quantum system, called a universal semi-POVM. We also give another characterization of Chaitin's \Omega numbers by universal probabilities. Then, based on this characterization, we propose to define an extension of \Omega as a sum of the POVM elements of a universal semi-POVM. The validity of this definition is discussed. In what follows, we introduce an operator version \hat{H}(s) of H(s) in a Hilbert space of infinite dimension using a universal semi-POVM, and study its properties.Comment: 24 pages, LaTeX2e, no figures, accepted for publication in Mathematical Logic Quarterly: The title was slightly changed and a section on an operator-valued algorithmic information theory was adde

    From Heisenberg to Goedel via Chaitin

    Full text link
    In 1927 Heisenberg discovered that the ``more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa''. Four years later G\"odel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. As both results express some kind of impossibility it is natural to ask whether there is any relation between them, and, indeed, this question has been repeatedly asked for a long time. The main interest seems to have been in possible implications of incompleteness to physics. In this note we will take interest in the {\it converse} implication and will offer a positive answer to the question: Does uncertainty imply incompleteness? We will show that algorithmic randomness is equivalent to a ``formal uncertainty principle'' which implies Chaitin's information-theoretic incompleteness. We also show that the derived uncertainty relation, for many computers, is physical. In fact, the formal uncertainty principle applies to {\it all} systems governed by the wave equation, not just quantum waves. This fact supports the conjecture that uncertainty implies randomness not only in mathematics, but also in physics.Comment: Small change

    A Quantum EL Theorem

    Full text link
    In this paper, we prove a quantum version of the EL Theorem. It states that non-exotic projections of large rank must have simple quantum states in their images. A consequence to this is there is no way to communicate a quantum source with corresponding large enough von Neumann entropy without using simple quantum states.Comment: arXiv admin note: text overlap with arXiv:2102.0390

    From quantum foundations to quantum information protocols and back

    Get PDF
    Physics has two main ambitions: to predict and to understand. Indeed, physics aims for the prediction of all natural phenomena. Prediction entails modeling the correlation between an action, the input, and what is subsequently observed, the output.Understanding, on the other hand, involves developing insightful principles and models that can explain the widest possible varietyof correlations present in nature. Remarkably, advances in both prediction and understanding foster our physical intuition and, as a consequence, novel and powerful applications are discovered. Quantum mechanics is a very successful physical theory both in terms of its predictive power as well as in its wide applicability. Nonetheless and despite many decades of development, we do not yet have a proper physical intuition of quantum phenomena. I believe that improvements in our understanding of quantum theory will yield better, and more innovative, protocols and vice versa.This dissertation aims at advancing our understanding and developing novel protocols. This is done through four approaches. The first one is to study quantum theory within a broad family of theories. In particular, we study quantum theory within the family of locally quantum theories. We found out that the principle that singles out quantum theory out of this family, thus connecting quantum local and nonlocal structure, is dynamical reversibility. This implies that the viability of large scale quantum computing can be based on concrete physical principles that can be experimentally tested at a local level without needing to test millions of qubits simultaneously. The second approach is to study quantum correlations from a black box perspective thus making as few assumptions as possible. The strategy is to study the completeness of quantum predictions by benchmarking them against alternative models. Three main results and applications come out of our study. Firstly, we prove that performing complete amplification of randomness starting from a source of arbitrarily weak randomness - a task that is impossible with classical resources - is indeed possible via nonlocality. This establishes in our opinion the strongest evidence for a truly random event in nature so far. Secondly, we prove that there exist finite events where quantum theory gives predictions as complete as any no-signaling theory can give, showing that the completeness of quantum theory is not an asymptotic property. Finally, we prove that maximally nonlocal theories can never be maximally random while quantum theory can, showing a trade-off between the nonlocality of a theory and its randomness capabilities. We also prove that quantum theory is not unique in this respect. The third approach we follow is to study quantum correlations in scenarios where some parties have a restriction on the available quantum degrees of freedom. The future progress of semi-device-independent quantum information depends crucially on our ability to bound the strength of these correlations. Here we provide a full characterization via a complete hierarchy of sets that approximate the target set from the outside. Each set can be in turn characterized using standard numerical techniques. One application of our work is certifying multidimensional entanglement device-independently.The fourth approach is to confront quantum theory with computer science principles. In particular, we establish two interesting implications for quantum theory results of raising the Church-Turing thesis to the level of postulate. Firstly, we show how different preparations of the same mixed state, indistinguishable according to the quantum postulates, become distinguishable when prepared computably. Secondly, we identify a new loophole for Bell-like experiments: if some parties in a Bell-like experiment use private pseudorandomness to choose their measurement inputs, the computational resources of an eavesdropper have to be limited to observe a proper violation of non locality.La física tiene dos finalidades: predecir y comprender. En efecto, la física aspira a poder predecir todos los fenómenos naturales. Predecir implica modelar correlaciones entre una acción y la reacción subsiguiente.Comprender, implica desarrollar leyes profundas que expliquen la más amplia gama de correlaciones presentes en la naturaleza. Avances tanto en la capacidad de predicción como en nuestra comprensión fomentan la intuición física y, como consecuencia, surgen nuevas y poderosas aplicaciones. La mecánica cuántica es una teoría física de enorme éxito por su capacidad de predicción y amplia aplicabilidad.Sin embargo, a pesar de décadas de gran desarrollo, no poseemos una intuición física satisfactoria de los fenómenos cuánticos.Creo que mejoras en nuestra comprensión de la teoría cuántica traerán consigo mejores y más innovadores protocolos y vice versa.Ésta tesis doctoral trata simultáneamente de avanzar nuestra comprensión y de desarrollar nuevos protocolos mediante cuatro enfoques distintos.El primero consiste en estudiar la mecánica cuántica como miembro de una familia de teorías: las teorías localmente cuánticas. Probamos que el principio que selecciona a la mecánica cuántica, conectando por tanto la estructura cuántica local y no local, es la reversibilidad de su dinámica.Ésto implica que la viabilidad de la computación cuántica a gran escala puede ser estudiada de manera local, comprobando experimentalmente ciertos principios físicos. El segundo enfoque consiste en estudiar las correlaciones cuánticas desde una perspectiva de 'caja negra', haciendo así el mínimo de asunciones físicas. La estrategia consiste en estudiar la completitud de las predicciones cuánticas, comparándolas con todos los modelos alternativos. Hemos obtenido tres grandes resultados. Primero, probamos que se puede amplificar completamente la aleatoriedad de una fuente de aleatoriedad arbitrariamente débil.Ésta tarea, imposible mediante recursos puramente clásicos, se vuelve factible gracias a la no localidad. Ésto establece a nuestro parecer la evidencia más fuerte de la existencia de eventos totalmente impredecibles en la naturaleza. Segundo, probamos que existen eventos finitos cuyas predicciones cuánticas son tan completas como permite el principio de 'no signaling'. Ésto prueba que la completitud de la mecánica cuántica no es una propiedad asintótica. Finalmente, probamos que las teorías máximamente no locales no pueden ser máximamente aleatorias, mientras que la mecánica cuántica lo es. Ésto muestra que hay una compensación entre la no localidad de una teoría y su capacidad para generar aleatoriedad. También probamos que la mecánica cuántica no es única en éste respecto. En tercer lugar, estudiamos las correlaciones cuánticas en escenarios dónde algunas partes tienen restricciones en el número de grados de libertad cuánticos accesibles. Éste escenario se denomina 'semi-device-independent'. Aquí encontramos una caracterización completa de éstas correlaciones mediante una jerarquía de conjuntos que aproximan al conjunto buscado desde fuera y que pueden ser caracterizados a su vez mediante técnicas numéricas estandar. Un aplicación de nuestro trabajo es la certificación de entrelazamiento multidimensional de manera 'device-independent'. El cuarto y último enfoque consiste en enfrentar a la mecánica cuántica con principios provenientes de la computación. En particular, establecemos dos implicaciones para la mecánica cuántica de elevar la tesis de Church-Turing al nivel de postulado. Primero, mostramos que diferentes preparaciones de un mismo estado mixto, indistinguibles de acuerdo a los axiomas cuánticos, devienen distinguibles cuando son preparados de manera computable. Segundo, identificamos un nuevo 'loophole' en experimentos de Bell: si algunas partes en un experimento de Bell usan pseudo aleatoriedad para escoger sus medidas, los recursos computacionales de un espía deben ser limitados a fin de observar verdaderamente la no localidad
    corecore