13,159 research outputs found

    Geometrically stopped Markovian random growth processes and Pareto tails

    Full text link
    Many empirical studies document power law behavior in size distributions of economic interest such as cities, firms, income, and wealth. One mechanism for generating such behavior combines independent and identically distributed Gaussian additive shocks to log-size with a geometric age distribution. We generalize this mechanism by allowing the shocks to be non-Gaussian (but light-tailed) and dependent upon a Markov state variable. Our main results provide sharp bounds on tail probabilities, a simple equation determining Pareto exponents, and comparative statics. We present two applications: we show that (i) the tails of the wealth distribution in a heterogeneous-agent dynamic general equilibrium model with idiosyncratic investment risk are Paretian, and (ii) a random growth model for the population dynamics of Japanese municipalities is consistent with the observed Pareto exponent but only after allowing for Markovian dynamics

    Tail bounds for all eigenvalues of a sum of random matrices

    Get PDF
    This work introduces the minimax Laplace transform method, a modification of the cumulant-based matrix Laplace transform method developed in "User-friendly tail bounds for sums of random matrices" (arXiv:1004.4389v6) that yields both upper and lower bounds on each eigenvalue of a sum of random self-adjoint matrices. This machinery is used to derive eigenvalue analogues of the classical Chernoff, Bennett, and Bernstein bounds. Two examples demonstrate the efficacy of the minimax Laplace transform. The first concerns the effects of column sparsification on the spectrum of a matrix with orthonormal rows. Here, the behavior of the singular values can be described in terms of coherence-like quantities. The second example addresses the question of relative accuracy in the estimation of eigenvalues of the covariance matrix of a random process. Standard results on the convergence of sample covariance matrices provide bounds on the number of samples needed to obtain relative accuracy in the spectral norm, but these results only guarantee relative accuracy in the estimate of the maximum eigenvalue. The minimax Laplace transform argument establishes that if the lowest eigenvalues decay sufficiently fast, on the order of (K^2*r*log(p))/eps^2 samples, where K is the condition number of an optimal rank-r approximation to C, are sufficient to ensure that the dominant r eigenvalues of the covariance matrix of a N(0, C) random vector are estimated to within a factor of 1+-eps with high probability.Comment: 20 pages, 1 figure, see also arXiv:1004.4389v

    Sample average approximation with heavier tails II: localization in stochastic convex optimization and persistence results for the Lasso

    Full text link
    We present exponential finite-sample nonasymptotic deviation inequalities for the SAA estimator's near-optimal solution set over the class of stochastic optimization problems with heavy-tailed random \emph{convex} functions in the objective and constraints. Such setting is better suited for problems where a sub-Gaussian data generating distribution is less expected, e.g., in stochastic portfolio optimization. One of our contributions is to exploit \emph{convexity} of the perturbed objective and the perturbed constraints as a property which entails \emph{localized} deviation inequalities for joint feasibility and optimality guarantees. This means that our bounds are significantly tighter in terms of diameter and metric entropy since they depend only on the near-optimal solution set but not on the whole feasible set. As a result, we obtain a much sharper sample complexity estimate when compared to a general nonconvex problem. In our analysis, we derive some localized deterministic perturbation error bounds for convex optimization problems which are of independent interest. To obtain our results, we only assume a metric regular convex feasible set, possibly not satisfying the Slater condition and not having a metric regular solution set. In this general setting, joint near feasibility and near optimality are guaranteed. If in addition the set satisfies the Slater condition, we obtain finite-sample simultaneous \emph{exact} feasibility and near optimality guarantees (for a sufficiently small tolerance). Another contribution of our work is to present, as a proof of concept of our localized techniques, a persistent result for a variant of the LASSO estimator under very weak assumptions on the data generating distribution.Comment: 34 pages. Some correction
    • …
    corecore