199 research outputs found

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Improved Constrained Global Optimization for Estimating Molecular Structure From Atomic Distances

    Get PDF
    Determination of molecular structure is commonly posed as a nonlinear optimization problem. The objective functions rely on a vast amount of structural data. As a result, the objective functions are most often nonconvex, nonsmooth, and possess many local minima. Furthermore, introduction of additional structural data into the objective function creates barriers in finding the global minimum, causes additional computational issues associated with evaluating the function, and makes physical constraint enforcement intractable. To combat the computational problems associated with standard nonlinear optimization formulations, Williams et al. (2001) proposed an atom-based optimization, referred to as GNOMAD, which complements a simple interatomic distance potential with van der Waals (VDW) constraints to provide better quality protein structures. However, the improvement in more detailed structural features such as shape and chirality requires the integration of additional constraint types. This dissertation builds on the GNOMAD algorithm in using structural data to estimate the three-dimensional structure of a protein. We develop several methods to make GNOMAD capable of effectively and efficiently handling non-distance information including torsional angles and molecular surface data. In specific, we propose a method for using distances to effectively satisfy known torsional information and show that use of this method results in a significant improvement in the quality of α-helices and β-strands within the protein. We also show that molecular surface data in combination with our improved secondary structure estimation method and long-range distance data offer increased accuracy in spatial proximity of α-helices and β-strands within the protein, and thus provide better estimates of tertiary protein structure. Lastly, we show that the enhanced GNOMAD molecular structure estimation framework is effective in predicting protein structures in the context of comparative modeling
    corecore