4,941 research outputs found

    1 Bounds and Constructions for Granular Media Coding

    Get PDF
    Abstract—Bounds on the rates of grain-correcting codes are presented. The lower bounds are Gilbert–Varshamov-like ones, whereas the upper bounds improve on the previously known result by Mazumdar et al. Constructions of t-grain-correcting codes of length n for certain values of n and t are discussed. Finally, an infinite family of codes of rate approaching 1 that can detect an arbitrary number of grain errors is shown to exist. Index Terms—convex optimization, Gilbert–Varshamov bound, grain-correcting codes, granular media, lower bounds, magnetic recording, Markov chain, upper bounds. I

    Correcting Grain-Errors in Magnetic Media

    Get PDF
    This paper studies new bounds and code constructions that are applicable to the combinatorial granular channel model previously introduced by Sharov and Roth. We derive new bounds on the maximum cardinality of a grain-error-correcting code and propose constructions of codes that correct grain-errors. We demonstrate that a permutation of the classical group codes (e.g., Constantin-Rao codes) can correct a single grain-error. In many cases of interest, our results improve upon the currently best known bounds and constructions. Some of the approaches adopted in the context of grain-errors may have application to related channel models

    Combinatorial channels from partially ordered sets

    Get PDF
    A central task of coding theory is the design of schemes to reliably transmit data though space, via communication systems, or through time, via storage systems. Our goal is to identify and exploit structural properties common to a wide variety of coding problems, classical and modern, using the framework of partially ordered sets. We represent adversarial error models as combinatorial channels, form combinatorial channels from posets, identify a structural property of posets that leads to families of channels with the same codes, and bound the size of codes by optimizing over a family of equivalent channels. A large number of previously studied coding problems that fit into this framework. This leads to a new upper bound on the size of s-deletion correcting codes. We use a linear programming framework to obtain sphere-packing upper bounds when there is little underlying symmetry in the coding problem. Finally, we introduce and investigate a strong notion of poset homomorphism: locally bijective cover preserving maps. We look for maps of this type to and from the subsequence partial order on q-ary strings
    • …
    corecore