1,101 research outputs found

    Upper Bounds on the Capacity of Binary Channels with Causal Adversaries

    Full text link
    In this work we consider the communication of information in the presence of a causal adversarial jammer. In the setting under study, a sender wishes to communicate a message to a receiver by transmitting a codeword (x1,...,xn)(x_1,...,x_n) bit-by-bit over a communication channel. The sender and the receiver do not share common randomness. The adversarial jammer can view the transmitted bits xix_i one at a time, and can change up to a pp-fraction of them. However, the decisions of the jammer must be made in a causal manner. Namely, for each bit xix_i the jammer's decision on whether to corrupt it or not must depend only on xjx_j for j≀ij \leq i. This is in contrast to the "classical" adversarial jamming situations in which the jammer has no knowledge of (x1,...,xn)(x_1,...,x_n), or knows (x1,...,xn)(x_1,...,x_n) completely. In this work, we present upper bounds (that hold under both the average and maximal probability of error criteria) on the capacity which hold for both deterministic and stochastic encoding schemes.Comment: To appear in the IEEE Transactions on Information Theory; shortened version appeared at ISIT 201

    The Capacity of Online (Causal) qq-ary Error-Erasure Channels

    Full text link
    In the qq-ary online (or "causal") channel coding model, a sender wishes to communicate a message to a receiver by transmitting a codeword x=(x1,…,xn)∈{0,1,…,qβˆ’1}n\mathbf{x} =(x_1,\ldots,x_n) \in \{0,1,\ldots,q-1\}^n symbol by symbol via a channel limited to at most pnpn errors and/or pβˆ—np^{*} n erasures. The channel is "online" in the sense that at the iith step of communication the channel decides whether to corrupt the iith symbol or not based on its view so far, i.e., its decision depends only on the transmitted symbols (x1,…,xi)(x_1,\ldots,x_i). This is in contrast to the classical adversarial channel in which the corruption is chosen by a channel that has a full knowledge on the sent codeword x\mathbf{x}. In this work we study the capacity of qq-ary online channels for a combined corruption model, in which the channel may impose at most pnpn {\em errors} and at most pβˆ—np^{*} n {\em erasures} on the transmitted codeword. The online channel (in both the error and erasure case) has seen a number of recent studies which present both upper and lower bounds on its capacity. In this work, we give a full characterization of the capacity as a function of q,pq,p, and pβˆ—p^{*}.Comment: This is a new version of the binary case, which can be found at arXiv:1412.637

    The benefit of a 1-bit jump-start, and the necessity of stochastic encoding, in jamming channels

    Full text link
    We consider the problem of communicating a message mm in the presence of a malicious jamming adversary (Calvin), who can erase an arbitrary set of up to pnpn bits, out of nn transmitted bits (x1,…,xn)(x_1,\ldots,x_n). The capacity of such a channel when Calvin is exactly causal, i.e. Calvin's decision of whether or not to erase bit xix_i depends on his observations (x1,…,xi)(x_1,\ldots,x_i) was recently characterized to be 1βˆ’2p1-2p. In this work we show two (perhaps) surprising phenomena. Firstly, we demonstrate via a novel code construction that if Calvin is delayed by even a single bit, i.e. Calvin's decision of whether or not to erase bit xix_i depends only on (x1,…,xiβˆ’1)(x_1,\ldots,x_{i-1}) (and is independent of the "current bit" xix_i) then the capacity increases to 1βˆ’p1-p when the encoder is allowed to be stochastic. Secondly, we show via a novel jamming strategy for Calvin that, in the single-bit-delay setting, if the encoding is deterministic (i.e. the transmitted codeword is a deterministic function of the message mm) then no rate asymptotically larger than 1βˆ’2p1-2p is possible with vanishing probability of error, hence stochastic encoding (using private randomness at the encoder) is essential to achieve the capacity of 1βˆ’p1-p against a one-bit-delayed Calvin.Comment: 21 pages, 4 figures, extended draft of submission to ISIT 201

    A characterization of the capacity of online (causal) binary channels

    Full text link
    In the binary online (or "causal") channel coding model, a sender wishes to communicate a message to a receiver by transmitting a codeword x=(x1,…,xn)∈{0,1}n\mathbf{x} =(x_1,\ldots,x_n) \in \{0,1\}^n bit by bit via a channel limited to at most pnpn corruptions. The channel is "online" in the sense that at the iith step of communication the channel decides whether to corrupt the iith bit or not based on its view so far, i.e., its decision depends only on the transmitted bits (x1,…,xi)(x_1,\ldots,x_i). This is in contrast to the classical adversarial channel in which the error is chosen by a channel that has a full knowledge on the sent codeword x\mathbf{x}. In this work we study the capacity of binary online channels for two corruption models: the {\em bit-flip} model in which the channel may flip at most pnpn of the bits of the transmitted codeword, and the {\em erasure} model in which the channel may erase at most pnpn bits of the transmitted codeword. Specifically, for both error models we give a full characterization of the capacity as a function of pp. The online channel (in both the bit-flip and erasure case) has seen a number of recent studies which present both upper and lower bounds on its capacity. In this work, we present and analyze a coding scheme that improves on the previously suggested lower bounds and matches the previously suggested upper bounds thus implying a tight characterization

    Correction of adversarial errors in networks

    Get PDF
    We design codes to transmit information over a network, some subset of which is controlled by a malicious adversary. The computationally unbounded, hidden adversary knows the message to be transmitted, and can observe and change information over the part of the network he controls. The network nodes do not share resources such as shared randomness or a private key. We first consider a unicast problem in a network with |E| parallel, unit-capacity, directed edges. The rate-region has two parts. If the adversary controls a fraction p < 0.5 of the |E| edges, the maximal throughput equals (1 βˆ’ p)|E|. We describe low-complexity codes that achieve this rate-region. We then extend these results to investigate more general multicast problems in directed, acyclic networks

    The Wiretap Channel with Feedback: Encryption over the Channel

    Full text link
    In this work, the critical role of noisy feedback in enhancing the secrecy capacity of the wiretap channel is established. Unlike previous works, where a noiseless public discussion channel is used for feedback, the feed-forward and feedback signals share the same noisy channel in the present model. Quite interestingly, this noisy feedback model is shown to be more advantageous in the current setting. More specifically, the discrete memoryless modulo-additive channel with a full-duplex destination node is considered first, and it is shown that the judicious use of feedback increases the perfect secrecy capacity to the capacity of the source-destination channel in the absence of the wiretapper. In the achievability scheme, the feedback signal corresponds to a private key, known only to the destination. In the half-duplex scheme, a novel feedback technique that always achieves a positive perfect secrecy rate (even when the source-wiretapper channel is less noisy than the source-destination channel) is proposed. These results hinge on the modulo-additive property of the channel, which is exploited by the destination to perform encryption over the channel without revealing its key to the source. Finally, this scheme is extended to the continuous real valued modulo-Ξ›\Lambda channel where it is shown that the perfect secrecy capacity with feedback is also equal to the capacity in the absence of the wiretapper.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore