1,428 research outputs found

    Spectral radius of finite and infinite planar graphs and of graphs of bounded genus

    Get PDF
    It is well known that the spectral radius of a tree whose maximum degree is DD cannot exceed 2D12\sqrt{D-1}. In this paper we derive similar bounds for arbitrary planar graphs and for graphs of bounded genus. It is proved that a the spectral radius ρ(G)\rho(G) of a planar graph GG of maximum vertex degree D4D\ge 4 satisfies Dρ(G)8D16+7.75\sqrt{D}\le \rho(G)\le \sqrt{8D-16}+7.75. This result is best possible up to the additive constant--we construct an (infinite) planar graph of maximum degree DD, whose spectral radius is 8D16\sqrt{8D-16}. This generalizes and improves several previous results and solves an open problem proposed by Tom Hayes. Similar bounds are derived for graphs of bounded genus. For every kk, these bounds can be improved by excluding K2,kK_{2,k} as a subgraph. In particular, the upper bound is strengthened for 5-connected graphs. All our results hold for finite as well as for infinite graphs. At the end we enhance the graph decomposition method introduced in the first part of the paper and apply it to tessellations of the hyperbolic plane. We derive bounds on the spectral radius that are close to the true value, and even in the simplest case of regular tessellations of type {p,q}\{p,q\} we derive an essential improvement over known results, obtaining exact estimates in the first order term and non-trivial estimates for the second order asymptotics

    Spectral radii of sparse random matrices

    Full text link
    We establish bounds on the spectral radii for a large class of sparse random matrices, which includes the adjacency matrices of inhomogeneous Erd\H{o}s-R\'enyi graphs. Our error bounds are sharp for a large class of sparse random matrices. In particular, for the Erd\H{o}s-R\'enyi graph G(n,d/n)G(n,d/n), our results imply that the smallest and second-largest eigenvalues of the adjacency matrix converge to the edges of the support of the asymptotic eigenvalue distribution provided that dlognd \gg \log n. Together with the companion paper [3], where we analyse the extreme eigenvalues in the complementary regime dlognd \ll \log n, this establishes a crossover in the behaviour of the extreme eigenvalues around dlognd \sim \log n. Our results also apply to non-Hermitian sparse random matrices, corresponding to adjacency matrices of directed graphs. The proof combines (i) a new inequality between the spectral radius of a matrix and the spectral radius of its nonbacktracking version together with (ii) a new application of the method of moments for nonbacktracking matrices

    Walks and the spectral radius of graphs

    Get PDF
    We give upper and lower bounds on the spectral radius of a graph in terms of the number of walks. We generalize a number of known results.Comment: Corrections were made in Theorems 5 and 11 (the new numbers are different), following a remark of professor Yaoping Ho

    A transfer principle and applications to eigenvalue estimates for graphs

    Full text link
    In this paper, we prove a variant of the Burger-Brooks transfer principle which, combined with recent eigenvalue bounds for surfaces, allows to obtain upper bounds on the eigenvalues of graphs as a function of their genus. More precisely, we show the existence of a universal constants CC such that the kk-th eigenvalue λknr\lambda_k^{nr} of the normalized Laplacian of a graph GG of (geometric) genus gg on nn vertices satisfies λknr(G)Cdmax(g+k)n,\lambda_k^{nr}(G) \leq C \frac{d_{\max}(g+k)}{n}, where dmaxd_{\max} denotes the maximum valence of vertices of the graph. This result is tight up to a change in the value of the constant CC, and improves recent results of Kelner, Lee, Price and Teng on bounded genus graphs. To show that the transfer theorem might be of independent interest, we relate eigenvalues of the Laplacian on a metric graph to the eigenvalues of its simple graph models, and discuss an application to the mesh partitioning problem, extending pioneering results of Miller-Teng-Thurston-Vavasis and Spielman-Tang to arbitrary meshes.Comment: Major revision, 16 page
    corecore