7,511 research outputs found

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    Design of sequences with good correlation properties

    Get PDF
    This thesis is dedicated to exploring sequences with good correlation properties. Periodic sequences with desirable correlation properties have numerous applications in communications. Ideally, one would like to have a set of sequences whose out-of-phase auto-correlation magnitudes and cross-correlation magnitudes are very small, preferably zero. However, theoretical bounds show that the maximum magnitudes of auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if a set of sequences possesses good auto-correlation properties, then the cross-correlation properties are not good and vice versa. The design of sequence sets that achieve those theoretical bounds is therefore of great interest. In addition, instead of pursuing the least possible correlation values within an entire period, it is also interesting to investigate families of sequences with ideal correlation in a smaller zone around the origin. Such sequences are referred to as sequences with zero correlation zone or ZCZ sequences, which have been extensively studied due to their applications in 4G LTE and 5G NR systems, as well as quasi-synchronous code-division multiple-access communication systems. Paper I and a part of Paper II aim to construct sequence sets with low correlation within a whole period. Paper I presents a construction of sequence sets that meets the Sarwate bound. The construction builds a connection between generalised Frank sequences and combinatorial objects, circular Florentine arrays. The size of the sequence sets is determined by the existence of circular Florentine arrays of some order. Paper II further connects circular Florentine arrays to a unified construction of perfect polyphase sequences, which include generalised Frank sequences as a special case. The size of a sequence set that meets the Sarwate bound, depends on a divisor of the period of the employed sequences, as well as the existence of circular Florentine arrays. Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and III propose infinite families of optimal ZCZ sequence sets with respect to some bound, which are used to eliminate interference within a single cell in a cellular network. Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ sequence sets with favorable inter-set cross-correlation, which can be used in multi-user communication environments to minimize inter-cell interference. In particular, Paper~II employs circular Florentine arrays and improves the number of the optimal ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.Doktorgradsavhandlin

    Two-Dimensional Z-Complementary Array Quads with Low Column Sequence PMEPRs

    Full text link
    In this paper, we first propose a new design strategy of 2D ZZ-complementary array quads (2D-ZCAQs) with feasible array sizes. A 2D-ZCAQ consists of four distinct unimodular arrays satisfying zero 2D auto-correlation sums for non-trivial 2D time-shifts within certain zone. Then, we obtain the upper bounds on the column sequence peak-to-mean envelope power ratio (PMEPR) of the constructed 2D-ZCAQs by using specific auto-correlation properties of some seed sequences. The constructed 2D-ZCAQs with bounded column sequence PMEPR can be used as a potential alternative to 2D Golay complementary array sets for practical applicationsComment: This work has been presented in 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwa

    A Direct Construction of Prime-Power-Length Zero-Correlation Zone Sequences for QS-CDMA System

    Full text link
    In recent years, zero-correlation zone (ZCZ) sequences are being studied due to their significant applications in quasi-synchronous code division multiple access (QS-CDMA) systems and other wireless communication domains. However, the lengths of most existing ZCZ sequences are limited, and their parameters are not flexible, which are leading to practical limitations in their use in QS-CDMA and other communication systems. The current study proposes a direct construction of ZCZ sequences of prime-power length with flexible parameters by using multivariable functions. In the proposed construction, we first present a multivariable function to generate a vector with specific properties; this is further used to generate another class of multivariable functions to generate the desired (pt,(pβˆ’1)pn,pn+t+1)(p^t,(p-1)p^n,p^{n+t+1})-ZCZ sequence set, where pp is a prime number, t,nt,n are positive integers, and t≀nt\leq n. The constructed ZCZ sequence set is optimal for the binary case and asymptotically optimal for the non-binary case by the \emph{Tang-Fan-Matsufuji} bound. Moreover, a relation between the second-order cosets of first-order generalized Reed-Muller code and the proposed ZCZ sequences is also established. The proposed construction of ZCZ sequences is compared with existing constructions, and it is observed that the parameters of this ZCZ sequence set are a generalization of that of in some existing works. Finally, the performance of the proposed ZCZ-based QS-CDMA system is compared with the Walsh-Hadamard and Gold code-based QS-CDMA system

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE
    • …
    corecore