1,610 research outputs found

    Robustness in facility location

    Get PDF
    Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research

    Developing Statistical Models to Assess Productivity in the Automotive Manufacturing Sector

    Get PDF
    The purpose of this study is to identify the most important activity in a value chain, effective factors, their impact, and to find estimation models of the most well-known productivity measurement, Hours per Vehicle (HPV), in the automotive industry in North American manufacturing plants. HPV is a widely recognized production performance indicator that is used by a significant percentage of worldwide automakers. During a comprehensive literature review, 13 important factors that affect HPV were defined as launching a new vehicle, ownership, car segment, model types, year, annual available working days, vehicle variety, flexibility, annual production volume, car assembly and capacity (CAC) utilization, outsourcing, platform strategy, and hourly employee\u27s percentage.;Data used in this study was from North American plants that participated in the Harbour\u27s survey from 1999 to 2007. Data are synthesized using a uniform methodology from information supplied by the plants and supplemented with plant visits by Harbour Consulting auditors. Overall, there are 682 manufacturing plants in the statistical sample from 10 different multinational automakers.;Several robust and advanced statistical methods were used to analyze the data and derive the best possible HPV regression equations. The final statistical models were validated through exhaustive cross-validation procedures. Mixed integer distributed ant colony optimization (MIDACO) algorithm, a nonlinear programming algorithm, that can robustly solve problems with critical function properties like high non-convexity, non-differentiability, flat spots, and even stochastic noise was used to achieve HPV target value.;During the study period, the HPV was reduced 48 minutes on the average each year. Annual production volume, flexible manufacturing, outsourcing, and platform strategy improve HPV. However, vehicle variety, model types, available annual working days, CAC, percentage of the hourly employees, and launching a new model penalize HPV. Japanese plants are the benchmark regarding the HPV followed by joint ventures and Americans. On average, the HPV is lower for Japanese and joint ventures in comparison to American automakers by about 1.83 and 1.28 hours, respectively. Launching a new model and adding a new variety in body styles or chassis configurations raises the HPV, depending on the car class; however, manufacturing plants compensate for this issue by using platform sharing and flexible manufacturing strategies. While launching a new vehicle common platform sharing, flexible manufacturing, and more salaried employees (lower hourly) strategies will help carmakers to overcome the effect of launching new vehicles productivity penalization to some extent.;The research investigates current strategies that help automakers to enhance their production performance and reduce their productivity gap. The HPV regression equations that are developed in this research may be used effectively to help carmakers to set guidelines to improve their productivity with respect to internal and external constraints, strengths, weaknesses, opportunities, and threats

    Forecasting Models for Integration of Large-Scale Renewable Energy Generation to Electric Power Systems

    Get PDF
    Amid growing concerns about climate change and non-renewable energy sources deple¬tion, vari¬able renewable energy sources (VRESs) are considered as a feasible substitute for conventional environment-polluting fossil fuel-based power plants. Furthermore, the transition towards clean power systems requires additional transmission capacity. Dynamic thermal line rating (DTLR) is being considered as a potential solution to enhance the current transmission line capacity and omit/postpone transmission system expansion planning, while DTLR is highly dependent on weather variations. With increasing the accommodation of VRESs and application of DTLR, fluctuations and variations thereof impose severe and unprecedented challenges on power systems operation. Therefore, short-term forecasting of large-scale VERSs and DTLR play a crucial role in the electric power system op¬eration problems. To this end, this thesis devotes on developing forecasting models for two large-scale VRESs types (i.e., wind and tidal) and DTLR. Deterministic prediction can be employed for a variety of power system operation problems solved by deterministic optimization. Also, the outcomes of deterministic prediction can be employed for conditional probabilistic prediction, which can be used for modeling uncertainty, used in power system operation problems with robust optimization, chance-constrained optimization, etc. By virtue of the importance of deterministic prediction, deterministic prediction models are developed. Prevalently, time-frequency decomposition approaches are adapted to decompose the wind power time series (TS) into several less non-stationary and non-linear components, which can be predicted more precisely. However, in addition to non-stationarity and nonlinearity, wind power TS demonstrates chaotic characteristics, which reduces the predictability of the wind power TS. In this regard, a wind power generation prediction model based on considering the chaosity of the wind power generation TS is addressed. The model consists of a novel TS decomposition approach, named multi-scale singular spectrum analysis (MSSSA), and least squares support vector machines (LSSVMs). Furthermore, deterministic tidal TS prediction model is developed. In the proposed prediction model, a variant of empirical mode decomposition (EMD), which alleviates the issues associated with EMD. To further improve the prediction accuracy, the impact of different components of wind power TS with different frequencies (scales) in the spatiotemporal modeling of the wind farm is assessed. Consequently, a multiscale spatiotemporal wind power prediction is developed, using information theory-based feature selection, wavelet decomposition, and LSSVM. Power system operation problems with robust optimization and interval optimization require prediction intervals (PIs) to model the uncertainty of renewables. The advanced PI models are mainly based on non-differentiable and non-convex cost functions, which make the use of heuristic optimization for tuning a large number of unknown parameters of the prediction models inevitable. However, heuristic optimization suffers from several issues (e.g., being trapped in local optima, irreproducibility, etc.). To this end, a new wind power PI (WPPI) model, based on a bi-level optimization structure, is put forward. In the proposed WPPI, the main unknown parameters of the prediction model are globally tuned based on optimizing a convex and differentiable cost function. In line with solving the non-differentiability and non-convexity of PI formulation, an asymmetrically adaptive quantile regression (AAQR) which benefits from a linear formulation is proposed for tidal uncertainty modeling. In the prevalent QR-based PI models, for a specified reliability level, the probabilities of the quantiles are selected symmetrically with respect the median probability. However, it is found that asymmetrical and adaptive selection of quantiles with respect to median can provide more efficient PIs. To make the formulation of AAQR linear, extreme learning machine (ELM) is adapted as the prediction engine. Prevalently, the parameters of activation functions in ELM are selected randomly; while different sets of random values might result in dissimilar prediction accuracy. To this end, a heuristic optimization is devised to tune the parameters of the activation functions. Also, to enhance the accuracy of probabilistic DTLR, consideration of latent variables in DTLR prediction is assessed. It is observed that convective cooling rate can provide informative features for DTLR prediction. Also, to address the high dimensional feature space in DTLR, a DTR prediction based on deep learning and consideration of latent variables is put forward. Numerical results of this thesis are provided based on realistic data. The simulations confirm the superiority of the proposed models in comparison to traditional benchmark models, as well as the state-of-the-art models

    Advances in Polynomial Optimization

    Get PDF
    Polynomial optimization has a wide range of practical applications in fields such as optimal control, energy and water networks, facility location, management science, and finance. It also generalizes relevant optimization problems thoroughly studied in the literature, such as mixed-binary linear optimization, quadratic optimization, and complementarity problems. As finding globally optimal solutions is an extremely challenging task, the development of efficient techniques for solving polynomial optimization problems is of particular relevance. In this thesis we provide a detailed study of different techniques to solve this kind of problems and we introduce some nobel approaches in this field, including the use of statistical learning techniques. Furthermore, we also present a practical application of polynomial optimization to finance and more specifically, portfolio design

    Models for Flexible Supply Chain Network Design

    Full text link
    Arguably Supply Chain Management (SCM) is one of the central problems in Operations Research and Management Science (OR/MS). Supply Chain Network Design (SCND) is one of the most crucial strategic problems in the context of SCM. SCND involves decisions on the number, location, and capacity, of production/distribution facilities of a manufacturing company and/or its suppliers operating in an uncertain environment. Specifically, in the automotive industry, manufacturing companies constantly need to examine and improve their supply chain strategies due to uncertainty in the parameters that impact the design of supply chains. The rise of the Asian markets, introduction of new technologies (hybrid and electric cars), fluctuations in exchange rates, and volatile fuel costs are a few examples of these uncertainties. Therefore, our goal in this dissertation is to investigate the need for accurate quantitative decision support methods for decision makers and to show different applications of OR/MS models in the SCND realm. In the first technical chapter of the dissertation, we proposed a framework that enables the decision makers to systematically incorporate uncertainty in their designs, plan for many plausible future scenarios, and assess the quality of service and robustness of their decisions. Further, we discuss the details of the implementation of our framework for a case study in the automotive industry. Our analysis related to the uncertainty quantification, and network's design performance illustrates the benefits of using our framework in different settings of uncertainty. Although this chapter is focused on our case study in the automotive industry, it can be generalized to the SCND problem in any industry. We have outline the shortcomings of the current literature in incorporating the correlation among design parameters of the supply chains in the second technical chapter. In this chapter, we relax the traditional assumption of knowing the distribution of the uncertain parameters. We develop a methodology based on Distributionally Robust Optimization (DRO) with marginal uncertainty sets to incorporate the correlation among uncertain parameters into the designing process. Further, we propose a delayed generation constraint algorithm to solve the NP-hard correlated model in significantly less time than that required by commercial solvers. Further, we show that the price of ignoring this correlation in the parameters increases when we have less information about the uncertain parameters and that the correlated model gives higher profit when exchange rates are high compared to the stochastic model (with the independence assumption). We extended our models in previous chapters by presenting capacity options as a mechanism to hedge against uncertainty in the input parameters. The concept of capacity options similar to financial options constitute the right, but not the obligation, to buy more commodities from suppliers with a predetermined price, if necessary. In capital-intensive industries like the automotive industry, the lost capital investment for excess capacity and the opportunity costs of underutilized capacity have been important drivers for improving flexibility in supply contracts. Our proposed mechanism for high tooling cost parts decreases the total costs of the SCND and creates flexibility within the structure of the designed SCNs. Moreover, we draw several insights from our numerical analyses and discuss the possibility of price negotiations between suppliers and manufacturers over the hedging fixed costs and variable costs. Overall, the findings from this dissertation contribute to improve the flexibility, reliability, and robustness of the SCNs for a wide-ranging set of industries.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145819/1/nsalehi_1.pd

    Short-term wind power forecasting: probabilistic and space-time aspects

    Get PDF

    Do procurement rules impact infrastructure investment efficiency ? an empirical analysis of inversao das fases in Sao Paulo state

    Get PDF
    As a means to reduce delays in public works implementation, a number of Brazilian states have recently reformed their procurement rules allowing contractor price proposals to be assessed before the technical evaluation of submitted bids is undertaken (in a procedure known as inversao das fases). In order to evaluate the effects of such reform, this paper adopts a difference-in-differences methodology to compare the procurement performance of Sao Paulo state (a reformer state) and Minas Gerais'(a non-reformer state) largest water and sewage utility along three efficiency dimensions: (i) procurement process duration; (ii) likelihood of complaint resolution litigation; and (iii) prices paid to contractors. The analysis finds that the reform is associated with a 24 day reduction in the duration of procurement processes for large projects and a 7 percentage point drop in the likelihood of court challenges irrespective of project size. Although both effects are economically important, only the latter is statistical significant. Finally, the paper finds no evidence of an effect of the procurement reform on prices paid.Government Procurement,E-Business,Public Sector Corruption&Anticorruption Measures,Contract Law,Investment and Investment Climate
    • …
    corecore