80,729 research outputs found

    Practical Color-Based Motion Capture

    Get PDF
    Motion capture systems have been widely used for high quality content creation and virtual reality but are rarely used in consumer applications due to their price and setup cost. In this paper, we propose a motion capture system built from commodity components that can be deployed in a matter of minutes. Our approach uses one or more webcams and a color shirt to track the upper-body at interactive rates. We describe a robust color calibration system that enables our color-based tracking to work against cluttered backgrounds and under multiple illuminants. We demonstrate our system in several real-world indoor and outdoor settings

    Practical color-based motion capture

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 93-101).Motion capture systems track the 3-D pose of the human body and are widely used for high quality content creation, gestural user input and virtual reality. However, these systems are rarely deployed in consumer applications due to their price and complexity. In this thesis, we propose a motion capture system built from commodity components that can be deployed in a matter of minutes. Our approach uses one or more webcams and a color garment to track either the user's upper body or hands for motion capture and user input. We demonstrate that custom designed color garments can simplify difficult computer vision problems and lead to efficient and robust algorithms for hand and upper body tracking. Specifically, our highly descriptive color patterns alleviate ambiguities that are commonly encountered when tracking only silhouettes or edges, allowing us to employ a nearest-neighbor approach to track either the hands or the upper body at interactive rates. We also describe a robust color calibration system that enables our color-based tracking to work against cluttered backgrounds and under multiple illuminants. We demonstrate our system in several real-world indoor and outdoor settings and describe proof-of-concept applications enabled by our system that we hope will provide a foundation for new interactions in computer aided design, animation control and augmented reality.by Robert Yuanbo Wang.Ph.D

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Data-Driven Approach to Simulating Realistic Human Joint Constraints

    Full text link
    Modeling realistic human joint limits is important for applications involving physical human-robot interaction. However, setting appropriate human joint limits is challenging because it is pose-dependent: the range of joint motion varies depending on the positions of other bones. The paper introduces a new technique to accurately simulate human joint limits in physics simulation. We propose to learn an implicit equation to represent the boundary of valid human joint configurations from real human data. The function in the implicit equation is represented by a fully connected neural network whose gradients can be efficiently computed via back-propagation. Using gradients, we can efficiently enforce realistic human joint limits through constraint forces in a physics engine or as constraints in an optimization problem.Comment: To appear at ICRA 2018; 6 pages, 9 figures; for associated video, see https://youtu.be/wzkoE7wCbu

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Wheelchair-based game design for older adults

    Get PDF
    Few leisure activities are accessible to institutionalized older adults using wheelchairs; in consequence, they experience lower levels of perceived health than able-bodied peers. Video games have been shown to be an engaging leisure activity for older adults. In our work, we address the design of wheelchair-accessible motion-based games. We present KINECTWheels, a toolkit designed to integrate wheelchair movements into motion-based games, and Cupcake Heaven, a wheelchair-based video game designed for older adults using wheelchairs. Results of two studies show that KINECTWheels can be applied to make motion-based games wheelchair-accessible, and that wheelchair-based games engage older adults. Through the application of the wheelchair as an enabling technology in play, our work has the potential of encouraging older adults to develop a positive relationship with their wheelchair. Copyright 2013 ACM
    corecore