519 research outputs found

    Matching Theory for Future Wireless Networks: Fundamentals and Applications

    Full text link
    The emergence of novel wireless networking paradigms such as small cell and cognitive radio networks has forever transformed the way in which wireless systems are operated. In particular, the need for self-organizing solutions to manage the scarce spectral resources has become a prevalent theme in many emerging wireless systems. In this paper, the first comprehensive tutorial on the use of matching theory, a Nobelprize winning framework, for resource management in wireless networks is developed. To cater for the unique features of emerging wireless networks, a novel, wireless-oriented classification of matching theory is proposed. Then, the key solution concepts and algorithmic implementations of this framework are exposed. Then, the developed concepts are applied in three important wireless networking areas in order to demonstrate the usefulness of this analytical tool. Results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Truncated Channel Inversion Power Control for the Uplink of mmWave Cellular Networks

    Get PDF
    In this paper, using the stochastic geometry, we develop a tractable uplink modeling paradigm for the outage probability of millimeter wave (mmWave) cellular networks. Our model takes account of the maximum power limitation and the per-user equipment (UE) power control as well as the effect of blockages. More specifically, each UE, which could be in line-ofsight (LOS) or non-LOS to its serving base station (BS), controls its transmit power such that the received signal power at its serving BS is equal to a predefined threshold. Hence, a truncated channel inversion power control is implemented for the uplink of the mmWave cellular network. We derive expressions for the truncated outage probability and the signal-to-interferenceand- noise-ratio (SINR) outage probability for the uplink of mmWave cellular networks. Our results show that contrary to the conventional ultra-high-frequency (UHF) networks there exists a slow growth region for the truncated outage probability
    corecore