636 research outputs found

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    A review of femtocell

    Get PDF
    The popularity of wireless networks has attracted the attention of researchers to improve the network system and this motivated the operators to find a new technology called femtocells with the aim of meeting the increased coverage and data demand in the indoor environment. The application of femtocells in both indoors and office environment has provided good quality service and high performance network gains. However, femtocells face challenges of interference management which deteriorate the capacity and quality of network. But to cope with these challenges, many researchers have come up with solutions to solve the problems, some of which include interference cancellation and interference avoidance

    System Level Simulation for Two Tier Macro-Femto Cellular Networks

    Full text link

    Femto Cells: Current Status and Future Directions

    Get PDF
    This is a survey paper on the recently developed and rapidly evolving field of femtocells. Quite often, it is noticed that cell-phone signals are strongly attenuated, when indoors, leading to call dropping or poor call quality. Femtocells are mini base stations that are deployed in users’ homes so that the user can directly connect to the cellular network through the femtocell instead of the outdoor macrocell, thereby increasing call quality. In the later stages of the paper, we also discuss the integration of the femtocell into the 3G architecture, as well as the various interference issues that the femtocell faces

    Green Femtocell Based on UWB Technologies

    Get PDF
    • …
    corecore