843 research outputs found

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    On Age-of-Information Aware Resource Allocation for Industrial Control-Communication-Codesign

    Get PDF
    Unter dem Überbegriff Industrie 4.0 wird in der industriellen Fertigung die zunehmende Digitalisierung und Vernetzung von industriellen Maschinen und Prozessen zusammengefasst. Die drahtlose, hoch-zuverlässige, niedrig-latente Kommunikation (engl. ultra-reliable low-latency communication, URLLC) – als Bestandteil von 5G gewährleistet höchste Dienstgüten, die mit industriellen drahtgebundenen Technologien vergleichbar sind und wird deshalb als Wegbereiter von Industrie 4.0 gesehen. Entgegen diesem Trend haben eine Reihe von Arbeiten im Forschungsbereich der vernetzten Regelungssysteme (engl. networked control systems, NCS) gezeigt, dass die hohen Dienstgüten von URLLC nicht notwendigerweise erforderlich sind, um eine hohe Regelgüte zu erzielen. Das Co-Design von Kommunikation und Regelung ermöglicht eine gemeinsame Optimierung von Regelgüte und Netzwerkparametern durch die Aufweichung der Grenze zwischen Netzwerk- und Applikationsschicht. Durch diese Verschränkung wird jedoch eine fundamentale (gemeinsame) Neuentwicklung von Regelungssystemen und Kommunikationsnetzen nötig, was ein Hindernis für die Verbreitung dieses Ansatzes darstellt. Stattdessen bedient sich diese Dissertation einem Co-Design-Ansatz, der beide Domänen weiterhin eindeutig voneinander abgrenzt, aber das Informationsalter (engl. age of information, AoI) als bedeutenden Schnittstellenparameter ausnutzt. Diese Dissertation trägt dazu bei, die Echtzeitanwendungszuverlässigkeit als Folge der Überschreitung eines vorgegebenen Informationsalterschwellenwerts zu quantifizieren und fokussiert sich dabei auf den Paketverlust als Ursache. Anhand der Beispielanwendung eines fahrerlosen Transportsystems wird gezeigt, dass die zeitlich negative Korrelation von Paketfehlern, die in heutigen Systemen keine Rolle spielt, für Echtzeitanwendungen äußerst vorteilhaft ist. Mit der Annahme von schnellem Schwund als dominanter Fehlerursache auf der Luftschnittstelle werden durch zeitdiskrete Markovmodelle, die für die zwei Netzwerkarchitekturen Single-Hop und Dual-Hop präsentiert werden, Kommunikationsfehlerfolgen auf einen Applikationsfehler abgebildet. Diese Modellierung ermöglicht die analytische Ableitung von anwendungsbezogenen Zuverlässigkeitsmetriken wie die durschnittliche Dauer bis zu einem Fehler (engl. mean time to failure). Für Single-Hop-Netze wird das neuartige Ressourcenallokationsschema State-Aware Resource Allocation (SARA) entwickelt, das auf dem Informationsalter beruht und die Anwendungszuverlässigkeit im Vergleich zu statischer Multi-Konnektivität um Größenordnungen erhöht, während der Ressourcenverbrauch im Bereich von konventioneller Einzelkonnektivität bleibt. Diese Zuverlässigkeit kann auch innerhalb eines Systems von Regelanwendungen, in welchem mehrere Agenten um eine begrenzte Anzahl Ressourcen konkurrieren, statistisch garantiert werden, wenn die Anzahl der verfügbaren Ressourcen pro Agent um ca. 10 % erhöht werden. Für das Dual-Hop Szenario wird darüberhinaus ein Optimierungsverfahren vorgestellt, das eine benutzerdefinierte Kostenfunktion minimiert, die niedrige Anwendungszuverlässigkeit, hohes Informationsalter und hohen durchschnittlichen Ressourcenverbrauch bestraft und so das benutzerdefinierte optimale SARA-Schema ableitet. Diese Optimierung kann offline durchgeführt und als Look-Up-Table in der unteren Medienzugriffsschicht zukünftiger industrieller Drahtlosnetze implementiert werden.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 139In industrial manufacturing, Industry 4.0 refers to the ongoing convergence of the real and virtual worlds, enabled through intelligently interconnecting industrial machines and processes through information and communications technology. Ultrareliable low-latency communication (URLLC) is widely regarded as the enabling technology for Industry 4.0 due to its ability to fulfill highest quality-of-service (QoS) comparable to those of industrial wireline connections. In contrast to this trend, a range of works in the research domain of networked control systems have shown that URLLC’s supreme QoS is not necessarily required to achieve high quality-ofcontrol; the co-design of control and communication enables to jointly optimize and balance both quality-of-control parameters and network parameters through blurring the boundary between application and network layer. However, through the tight interlacing, this approach requires a fundamental (joint) redesign of both control systems and communication networks and may therefore not lead to short-term widespread adoption. Therefore, this thesis instead embraces a novel co-design approach which keeps both domains distinct but leverages the combination of control and communications by yet exploiting the age of information (AoI) as a valuable interface metric. This thesis contributes to quantifying application dependability as a consequence of exceeding a given peak AoI with the particular focus on packet losses. The beneficial influence of negative temporal packet loss correlation on control performance is demonstrated by means of the automated guided vehicle use case. Assuming small-scale fading as the dominant cause of communication failure, a series of communication failures are mapped to an application failure through discrete-time Markov models for single-hop (e.g, only uplink or downlink) and dual-hop (e.g., subsequent uplink and downlink) architectures. This enables the derivation of application-related dependability metrics such as the mean time to failure in closed form. For single-hop networks, an AoI-aware resource allocation strategy termed state-aware resource allocation (SARA) is proposed that increases the application reliability by orders of magnitude compared to static multi-connectivity while keeping the resource consumption in the range of best-effort single-connectivity. This dependability can also be statistically guaranteed on a system level – where multiple agents compete for a limited number of resources – if the provided amount of resources per agent is increased by approximately 10 %. For the dual-hop scenario, an AoI-aware resource allocation optimization is developed that minimizes a user-defined penalty function that punishes low application reliability, high AoI, and high average resource consumption. This optimization may be carried out offline and each resulting optimal SARA scheme may be implemented as a look-up table in the lower medium access control layer of future wireless industrial networks.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 13

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Distributed Implementation of eXtended Reality Technologies over 5G Networks

    Get PDF
    Mención Internacional en el título de doctorThe revolution of Extended Reality (XR) has already started and is rapidly expanding as technology advances. Announcements such as Meta’s Metaverse have boosted the general interest in XR technologies, producing novel use cases. With the advent of the fifth generation of cellular networks (5G), XR technologies are expected to improve significantly by offloading heavy computational processes from the XR Head Mounted Display (HMD) to an edge server. XR offloading can rapidly boost XR technologies by considerably reducing the burden on the XR hardware, while improving the overall user experience by enabling smoother graphics and more realistic interactions. Overall, the combination of XR and 5G has the potential to revolutionize the way we interact with technology and experience the world around us. However, XR offloading is a complex task that requires state-of-the-art tools and solutions, as well as an advanced wireless network that can meet the demanding throughput, latency, and reliability requirements of XR. The definition of these requirements strongly depends on the use case and particular XR offloading implementations. Therefore, it is crucial to perform a thorough Key Performance Indicators (KPIs) analysis to ensure a successful design of any XR offloading solution. Additionally, distributed XR implementations can be intrincated systems with multiple processes running on different devices or virtual instances. All these agents must be well-handled and synchronized to achieve XR real-time requirements and ensure the expected user experience, guaranteeing a low processing overhead. XR offloading requires a carefully designed architecture which complies with the required KPIs while efficiently synchronizing and handling multiple heterogeneous devices. Offloading XR has become an essential use case for 5G and beyond 5G technologies. However, testing distributed XR implementations requires access to advanced 5G deployments that are often unavailable to most XR application developers. Conversely, the development of 5G technologies requires constant feedback from potential applications and use cases. Unfortunately, most 5G providers, engineers, or researchers lack access to cutting-edge XR hardware or applications, which can hinder the fast implementation and improvement of 5G’s most advanced features. Both technology fields require ongoing input and continuous development from each other to fully realize their potential. As a result, XR and 5G researchers and developers must have access to the necessary tools and knowledge to ensure the rapid and satisfactory development of both technology fields. In this thesis, we focus on these challenges providing knowledge, tools and solutiond towards the implementation of advanced offloading technologies, opening the door to more immersive, comfortable and accessible XR technologies. Our contributions to the field of XR offloading include a detailed study and description of the necessary network throughput and latency KPIs for XR offloading, an architecture for low latency XR offloading and our full end to end XR offloading implementation ready for a commercial XR HMD. Besides, we also present a set of tools which can facilitate the joint development of 5G networks and XR offloading technologies: our 5G RAN real-time emulator and a multi-scenario XR IP traffic dataset. Firstly, in this thesis, we thoroughly examine and explain the KPIs that are required to achieve the expected Quality of Experience (QoE) and enhanced immersiveness in XR offloading solutions. Our analysis focuses on individual XR algorithms, rather than potential use cases. Additionally, we provide an initial description of feasible 5G deployments that could fulfill some of the proposed KPIs for different offloading scenarios. We also present our low latency muti-modal XR offloading architecture, which has already been tested on a commercial XR device and advanced 5G deployments, such as millimeter-wave (mmW) technologies. Besides, we describe our full endto- end complex XR offloading system which relies on our offloading architecture to provide low latency communication between a commercial XR device and a server running a Machine Learning (ML) algorithm. To the best of our knowledge, this is one of the first successful XR offloading implementations for complex ML algorithms in a commercial device. With the goal of providing XR developers and researchers access to complex 5G deployments and accelerating the development of future XR technologies, we present FikoRE, our 5G RAN real-time emulator. FikoRE has been specifically designed not only to model the network with sufficient accuracy but also to support the emulation of a massive number of users and actual IP throughput. As FikoRE can handle actual IP traffic above 1 Gbps, it can directly be used to test distributed XR solutions. As we describe in the thesis, its emulation capabilities make FikoRE a potential candidate to become a reference testbed for distributed XR developers and researchers. Finally, we used our XR offloading tools to generate an XR IP traffic dataset which can accelerate the development of 5G technologies by providing a straightforward manner for testing novel 5G solutions using realistic XR data. This dataset is generated for two relevant XR offloading scenarios: split rendering, in which the rendering step is moved to an edge server, and heavy ML algorithm offloading. Besides, we derive the corresponding IP traffic models from the captured data, which can be used to generate realistic XR IP traffic. We also present the validation experiments performed on the derived models and their results.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Narciso García Santos.- Secretario: Fernando Díaz de María.- Vocal: Aryan Kaushi

    Reinforcement Learning Based Resource Allocation for Energy-Harvesting-Aided D2D Communications in IoT Networks

    Get PDF
    It is anticipated that mobile data traffic and the demand for higher data rates will increase dramatically as a result of the explosion of wireless devices, such as the Internet of Things (IoT) and machine-to-machine communication. There are numerous location-based peer-to-peer services available today that allow mobile users to communicate directly with one another, which can help offload traffic from congested cellular networks. In cellular networks, Device-to-Device (D2D) communication has been introduced to exploit direct links between devices instead of transmitting through a the Base Station (BS). However, it is critical to note that D2D and IoT communications are hindered heavily by the high energy consumption of mobile devices and IoT devices. This is because their battery capacity is restricted. There may be a way for energy-constrained wireless devices to extend their lifespan by drawing upon reusable external sources of energy such as solar, wind, vibration, thermoelectric, and radio frequency (RF) energy in order to overcome the limited battery problem. Such approaches are commonly referred to as Energy Harvesting (EH) There is a promising approach to energy harvesting that is called Simultaneous Wireless Information and Power Transfer (SWIPT). Due to the fact that wireless users are on the rise, it is imperative that resource allocation techniques be implemented in modern wireless networks. This will facilitate cooperation among users for limited resources, such as time and frequency bands. As well as ensuring that there is an adequate supply of energy for reliable and efficient communication, resource allocation also provides a roadmap for each individual user to follow in order to consume the right amount of energy. In D2D networks with time, frequency, and power constraints, significant computing power is generally required to achieve a joint resource management design. Thus the purpose of this study is to develop a resource allocation scheme that is based on spectrum sharing and enables low-cost computations for EH-assisted D2D and IoT communication. Until now, there has been no study examining resource allocation design for EH-enabled IoT networks with SWIPT-enabled D2D schemes that utilize learning techniques and convex optimization. In most of the works, optimization and iterative approaches with a high level of computational complexity have been used which is not feasible in many IoT applications. In order to overcome these obstacles, a learning-based resource allocation mechanism based on the SWIPT scheme in IoT networks is proposed, where users are able to harvest energy from different sources. The system model consists of multiple IoT users, one BS, and multiple D2D pairs in EH-based IoT networks. As a means of developing an energy-efficient system, we consider the SWIPT scheme with D2D pairs employing the time switching method (TS) to capture energy from the environment, whereas IoT users employ the power splitting method (PS) to harvest energy from the BS. A mixed-integer nonlinear programming (MINLP) approach is presented for the solution of the Energy Efficiency (EE) problem by jointly optimizing subchannel allocation, power-splitting factor, power, and time together. As part of the optimization approach, the original EE optimization problem is decomposed into three subproblems, namely: (a) subchannel assignment and power splitting factor, (b) power allocation, and (c) time allocation. In order to solve the subproblem assignment problem, which involves discrete variables, the Q-learning approach is employed. Due to the large size of the overall problem and the continuous nature of certain variables, it is impractical to optimize all variables by using the learning technique. Instead dealing for the continuous variable problems, namely power and time allocation, the original non-convex problem is first transformed into a convex one, then the Majorization-Minimization (MM) approach is applied as well as the Dinkelbach. The performance of the proposed joint Q-learning and optimization algorithm has been evaluated in detail. In particular, the solution was compared with a linear EH model, as well as two heuristic algorithms, namely the constrained allocation algorithm and the random allocation algorithm, in order to determine its performance. The results indicate that the technique is superior to conventional approaches. For example, it can be seen that for the distance of d=10d = 10 m, our proposed algorithm leads to EE improvement when compared to the method such as prematching algorithm, constrained allocation, and random allocation methods by about 5.26\%, 110.52\%, and 143.90\%, respectively. Considering the simulation results, the proposed algorithm is superior to other methods in the literature. Using spectrum sharing and harvesting energy from D2D and IoT devices achieves impressive EE gains. This superior performance can be seen both in terms of the average and sum EEs, as well as when compared to other baseline schemes

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book
    • …
    corecore