9,572 research outputs found

    Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues

    Full text link
    As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.Comment: 27 pages, 11 figure

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    Full-Duplex Non-Orthogonal Multiple Access for Modern Wireless Networks

    Full text link
    Non-orthogonal multiple access (NOMA) is an interesting concept to provide higher capacity for future wireless communications. In this article, we consider the feasibility and benefits of combining full-duplex operation with NOMA for modern communication systems. Specifically, we provide a comprehensive overview on application of full-duplex NOMA in cellular networks, cooperative and cognitive radio networks, and characterize gains possible due to full-duplex operation. Accordingly, we discuss challenges, particularly the self-interference and inter-user interference and provide potential solutions to interference mitigation and quality-of-service provision based on beamforming, power control, and link scheduling. We further discuss future research challenges and interesting directions to pursue to bring full-duplex NOMA into maturity and use in practice.Comment: Revised, IEEE Wireless Communication Magazin

    Cloud Radio Access Network: Virtualizing Wireless Access for Dense Heterogeneous Systems

    Full text link
    Cloud Radio Access Network (C-RAN) refers to the virtualization of base station functionalities by means of cloud computing. This results in a novel cellular architecture in which low-cost wireless access points, known as radio units (RUs) or remote radio heads (RRHs), are centrally managed by a reconfigurable centralized "cloud", or central, unit (CU). C-RAN allows operators to reduce the capital and operating expenses needed to deploy and maintain dense heterogeneous networks. This critical advantage, along with spectral efficiency, statistical multiplexing and load balancing gains, make C-RAN well positioned to be one of the key technologies in the development of 5G systems. In this paper, a succinct overview is presented regarding the state of the art on the research on C-RAN with emphasis on fronthaul compression, baseband processing, medium access control, resource allocation, system-level considerations and standardization efforts.Comment: To appear on JC

    Discovery Signal Design and Its Application to Peer-to-Peer Communications in OFDMA Cellular Networks

    Full text link
    This paper proposes a unique discovery signal as an enabler of peer-to-peer (P2P) communication which overlays a cellular network and shares its resources. Applying P2P communication to cellular network has two key issues: 1. Conventional ad hoc P2P connections may be unstable since stringent resource and interference coordination is usually difficult to achieve for ad hoc P2P communications; 2. The large overhead required by P2P communication may offset its gain. We solve these two issues by using a special discovery signal to aid cellular network-supervised resource sharing and interference management between cellular and P2P connections. The discovery signal, which facilitates efficient neighbor discovery in a cellular system, consists of un-modulated tones transmitted on a sequence of OFDM symbols. This discovery signal not only possesses the properties of high power efficiency, high interference tolerance, and freedom from near-far effects, but also has minimal overhead. A practical discovery-signal-based P2P in an OFDMA cellular system is also proposed. Numerical results are presented which show the potential of improving local service and edge device performance in a cellular network.Comment: arXiv admin note: text overlap with arXiv:1112.1990, arXiv:1207.0557 add reference in page 5 add text in page 5 for explainatio

    Achieve Sustainable Ultra-Dense Heterogeneous Networks for 5G

    Full text link
    Due to the exponentially increased demands of mobile data traffic, e.g., a 1000-fold increase in traffic demand from 4G to 5G, network densification is considered as a key mechanism in the evolution of cellular networks, and ultra-dense heterogeneous network (UDHN) is a promising technique to meet the requirements of explosive data traffic in 5G networks. In the UDHN, base station is brought closer and closer to users through densely deploying small cells, which would result in extremely high spectral efficiency and energy efficiency. In this article, we first present a potential network architecture for the UDHN, and then propose a generalized orthogonal/non-orthogonal random access scheme to improve the network efficiency while reducing the signaling overhead. Simulation results demonstrate the effectiveness of the proposed scheme. Finally, we present some of the key challenges of the UDHN

    User Selection and Power Allocation in Full Duplex Multi-Cell Networks

    Full text link
    Full duplex (FD) communications has the potential to double the capacity of a half duplex (HD) system at the link level. However, in a cellular network, FD operation is not a straightforward extension of half duplex operations. The increased interference due to a large number of simultaneous transmissions in FD operation and realtime traffic conditions limits the capacity improvement. Realizing the potential of FD requires careful coordination of resource allocation among the cells as well as within the cell. In this paper, we propose a distributed resource allocation, i.e., joint user selection and power allocation for a FD multi-cell system, assuming FD base stations (BSs) and HD user equipment (UEs). Due to the complexity of finding the globally optimum solution, a sub-optimal solution for UE selection, and a novel geometric programming based solution for power allocation, are proposed. The proposed distributed approach converges quickly and performs almost as well as a centralized solution, but with much lower signaling overhead. It provides a hybrid scheduling policy which allows FD operations whenever it is advantageous, but otherwise defaults to HD operation. We focus on small cell systems because they are more suitable for FD operation, given practical self-interference cancellation limits.With practical self-interference cancellation, it is shown that the proposed hybrid FD system achieves nearly two times throughput improvement for an indoor multi-cell scenario, and about 65% improvement for an outdoor multi-cell scenario compared to the HD system.Comment: 15 pages, to be published in IEEE Transactions on Vehicular Technology, 2016. arXiv admin note: text overlap with arXiv:1412.870

    Large-scale Antenna Operation in Heterogeneous Cloud Radio Access Networks: A Partial Centralization Approach

    Full text link
    To satisfy the ever-increasing capacity demand and quality of service (QoS) requirements of users, 5G cellular systems will take the form of heterogeneous networks (HetNets) that consist of macro cells and small cells. To build and operate such systems, mobile operators have given significant attention to cloud radio access networks (C-RANs) due to their beneficial features of performance optimization and cost effectiveness. Along with the architectural enhancement of C-RAN, large-scale antennas (a.k.a. massive MIMO) at cell sites contribute greatly to increased network capacity either with higher spectral efficiency or through permitting many users at once. In this article, we discuss the challenging issues of C-RAN based HetNets (H-CRAN), especially with respect to large-scale antenna operation. We provide an overview of existing C-RAN architectures in terms of large-scale antenna operation and promote a partially centralized approach. This approach reduces, remarkably, fronthaul overheads in CRANs with large-scale antennas. We also provide some insights into its potential and applicability in the fronthaul bandwidthlimited H-CRAN with large-scale antennas.Comment: To appear in IEEE Wireless Communications Magazine June 201

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Over-the-air Signaling in Cellular Networks: An Overview

    Full text link
    To improve the capacity and coverage of current cellular networks, many advanced technologies such as massive MIMO, inter-cell coordination, small cells, device-to-device communications, and so on, are under studying. Many proposed techniques have been shown to offer significant performance improvement. Thus, the enabler of those techniques is of great importance. That is the necessary signaling which guarantee the operation of those techniques. The design and transmission of those signaling, especially the over-the-air (OTA) signaling, is challenging. In this article, we provide an overview of the OTA signaling in cellular networks to provide insights on the design of OTA signaling. Specifically, we first give a brief introduction of the OTA signaling in long term evolution (LTE), and then we discuss the challenges and requirements in designing the OTA signaling in cellular networks in detail. To better understand the OTA signaling, we give two important classifications of OTA signaling and address their properties and applications. Finally, we propose a signature-based signaling named (single-tone signaling, STS) which can be used for inter-cell OTA signaling and is especially useful and robust in multi-signal scenario. Simulation results are given to compare the detection performance of different OTA signaling.Comment: 8 page
    corecore